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ABSTRACT 

 
 
 
 

A multiprocessing system has processor-memory modules in a network 

which is always referred to as net.  In many cases, the modules are placed in a 

regular arrangement such as rectangular grid, bus, star and hypercube.  In this 

research, we proposed one conceptual model and two network topologies for routing 

the elements of the network.  In the first model, a static single-row network was 

transformed into a dynamic three-dimensional cylindrical model.  This new routing 

model has its axis perpendicular to single-row planes, which gives the advantage of 

allowing unlimited connections between the pairs of elements based on the program 

requirements.  The single-row routings in each network were produced optimally 

using the earlier model called Enhanced Simulated Annealing for Single-row 

Routing (ESSR).  In the second part of this research, mesh network topology which 

consists of an
 
array of square cells was proposed as our routing platform to achieve a 

complete automatic routing.  The problem was further split into two cases; first, a 

fully gridded network to minimize the number of layers and second, the obstacle 

avoidance network model.  Dijkstra‟s shortest path algorithm was used to provide the 

shortest path for each net.  The arrangement was further refined using a simulated 

annealing method.  From this technique, the minimum number of layers was 

produced to complete the routing with lower energy level and to provide the best 

path if it exists, with the presence of obstacles.  The last part of this research is an 

extension of our previous work, where a more scalable and regular network called 

semi-diagonal torus (SD-Torus) network was used as a routing platform instead of 

the mesh network.  The performance of SD-Torus network was much better 

compared to torus and mesh networks in terms of energy level and the number of 

routed nets.  The network topology performed complete routing up to 81 nodes with 

80 nets in 9 9  network size.  This technique maximizes the number of nets through 

the minimum energy.  The simulations for each network are developed using 

Microsoft Visual C++ 2010 programming language.  
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ABSTRAK 

 
 
 
 

Sebuah sistem multipemprosesan terdiri daripada pasangan modul prosesor-

memori dalam sebuah rangkaian yang sering dirujuk sebagai jaring.  Dalam 

kebanyakan kes, modul ini disusun dalam susunan yang tetap seperti grid segi empat 

tepat, bus, torus dan hiperkiub. Dalam penyelidikan ini, kami mencadangkan satu 

model konseptual dan dua topologi rangkaian bagi menghalakan setiap elemen di 

dalam rangkaian.  Dalam model yang pertama, sebuah rangkaian baris tunggal yang 

bersifat statik telah dijelmakan menjadi sebuah model silinder tiga dimensi yang 

dinamik.  Model laluan yang baharu ini mempunyai paksinya serenjang kepada satah 

baris tunggal yang mempunyai kelebihan untuk membenarkan jumlah sambungan 

tanpa had bagi setiap pasangan elemen, bergantung kepada keperluan program.  

Laluan baris tunggal bagi setiap rangkaian dihasilkan secara optimum melalui 

program terdahulu yang dipanggil Simulasi Penyepuhlindapan yang dipertingkatkan 

bagi Laluan Baris Tunggal (ESSR).  Dalam bahagian yang kedua bagi kajian ini, 

rangkaian topologi mesh yang terdiri daripada susunan sel segi empat sama 

dicadangkan menjadi landasan laluan bagi mencapai laluan automatik yang lengkap.  

Masalah ini kemudiannya dibahagikan kepada dua kes, kes pertama, model bergrid 

penuh untuk meminimumkan bilangan lapisan dan kes kedua, model penghindaran 

halangan.  Algoritma laluan terpendek Dijkstra diguna pakai untuk menghasilkan 

laluan terpendek bagi setiap jaring.  Susunan setiap jaring pula ditapis lagi 

menggunakan kaedah simulasi penyepuhlindapan.  Daripada teknik ini, lapisan 

minimum dapat dihasilkan bagi melengkapkan laluan dengan tahap tenaga yang 

lebih rendah dan juga memberi laluan terbaik jika wujud walaupun dengan kehadiran 

halangan.  Bahagian terakhir penyelidikan ini merupakan lanjutan kepada kajian 

terdahulu kami, di mana rangkaian yang lebih mudah diskalakan dan beraturan tetap 

yang dinamakan Rangkaian Torus Separuh Perpenjuru (SD-Torus), digunakan 

sebagai landasan laluan menggantikan rangkaian mesh.  Prestasi rangkaian SD-Torus 

adalah lebih baik dibandingkan dengan rangkaian torus dan mesh dari segi tahap 

tenaga dan bilangan jaring yang dihalakan.  Topologi rangkaian ini melaksanakan 

laluan lengkap sehingga 81 nod dengan 80 jaring di dalam rangkaian bersaiz 9 9 .  

Teknik ini memaksimumkan jumlah sambungan jaring melalui tahap tenaga yang 

minimum. Simulasi bagi setiap rangkaian dibina menggunakan bahasa 

pengaturcaraan Microsoft Visual C++ 2010. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

A Printed Circuit Board (PCB) is a board made from glass reinforced plastic 

with copper tracks, which is the backbone of electrical devices.  Traditionally, 

embedded applications in multimedia, wireless communications or networking have 

been implemented for PCBs.  A PCB system is a composition of discrete integrated 

circuits (ICs) such as General Purpose Processors, Digital Signal Processors and 

many more [1].  The revolutionary changes in technologies have help humans in 

developing more sophisticated electronic devices.  Nowadays, electronic devices 

such as computers, laptops, smartphones, tablet computers with touch screen display 

and virtual keyboards have no doubt become common tools in our daily lives.  Not 

just that, but in the context of solving large-scale scientific problem, the demand for 

the use of supercomputers has increased.  This fastest type of computer can perform 

at or nearly the highest operational rate for computers.  A supercomputer is very 

efficient in solving scientific problems that involve three interactive disciplines: 

theories, experiments and computations.  It has been used to solve various complex 

problems in the field of weather forecasting, structural analysis, electronic circuit 

design, advanced automation, artificial intelligent, as well as socioeconomics.  Its 

computational part is cheaper, faster and produces more accurate results.  Therefore, 

the demand for research and development in integrated circuit and automated design 

has also increased rapidly. 
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This advancement in technologies has been made possible thanks to the 

evolution of integrated circuits.  The first transistor was invented by William 

Shockley, John Bardeen and Walter Brattain at Bell Laboratories on 16
th

 December 

1947 [2].  This was the most important invention in electronics event as it was later 

made possible for the invention of integrated circuit and microprocessor.  A single-

transistor integrated circuit was then invented by Jack Kilby in 1958 at Texas 

Instruments [3].  At first, ICs version in 1962 was just a simple device with two to 

four digital gates per package.  Later on, in 1975, the ICs itself had undergone a great 

advancement. It was produced with 2000 gates and 4000 bits of memory per 

package.  Such remarkable changes have increased the requirement for electronic 

circuits.  Figure 1.1 illustrates the expansion for the demand. 

 

 

 

 

 

Figure 1.1 The demand for electronic circuits during vacuum-tube era and during 

the invention of transistor and ICs. 

 

 

The inventions of transistors and ICs have given birth to microprocessors.  

Today, a microprocessor represents the most complex application of transistors [4].  

The history of microprocessor starts in 1970, when Intel Corporation released their 

first microprocessor called Intel 4004 [5].  It was the first commercially available 

microprocessor.  The designing of the chip started in April 1970 and was completed 

in January 1971.   
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The quest to increase the number of devices per chip had resulted in a rapid 

transition from Small-Scale Integration (SSI), Medium-Scale Integration (MSI), 

Large-Scale Integration (LSI) and Very Large-Scale Integration (VLSI) [6].  This 

advancement is as illustrated in Figure 1.2. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 The chip scope and the sequence of technologies in circuit integration. 

 

 

This integration has significantly reduces manufacturing cost and improves 

the design in several ways: 

 

i. Compactness: Physically small. 

ii. Speed: Higher speed with lower parasitic element (reduced 

interconnection length) 

iii. Power Consumption: Lower. 

iv. Reliability: High reliability which improves on-chip interconnection. 

 

 

A VLSI chip constitutes 10 to 100 million devices compared to SSI that 

contains transistors numbering in the tens back then [7-8].  The relationship between 

numbers of transistors per chip versus years has become Moore‟s first law.  

According to this law, the transistor count doubles every 18 months [9].  To reflect 

further growth of complexity, the term Ultra Large Scale Integration (ULSI) has been 

used for chip with more than 1 million of transistors [10].  

 

 

On-chip communication also undergoes several stages of evolution as 

illustrated in Figure 1.3. A shared bus on-chip communication architecture is an 

upgraded version of custom bus and is the most common way to send data and 

 

LSI VLSI ULSI 
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commonly found in many commercial System-on-Chips (SoCs) [11]. However, 

several drawbacks of shared bus such as longer data transmission lead the 

researchers to focus on hierarchical buses. This type of buses consists of several 

shared buses interconnected by a bridge to improve the performance. This new 

topology offers large throughput improvements compared to shared buses such as 

decreased load per bus. Bus matrix, or also called crossbar switch as discussed in 

([12], [13]), is getting increasingly popular for on-chip communication. It consists of 

several buses in parallel, which connect every master to every slave. This results in 

wire congestion and makes it impractical to achieve timing closure of the design 

[14]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Evolution on bus on-chip communications. 

 

 

Network-on-Chip (NoC) is the latest development in the field of VLSI design 

[15-16].  It is the communication backbone of virtually all large-scale System-on-

Chips (SoC) designs.  The main feature of NoC is the use of networking technology 

to establish connection within the chip instead of using buses.  Since an integrated 

system contains billions of transistors composing tens to hundreds of IP cores, the 

main challenge in NoC is to design on-chip interconnection networks that efficiently 

connect the IP cores [17].  NoC architecture as proposed in [18] deploys mesh 

interconnection topology due to its simplest feature in terms of layout perspective.  

This topology is as shown in Figure 1.4. 
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Figure 1.4 A 4 4  mesh NoC topology. 

 

 

However, since mesh network has large network diameter and small bisection 

width, a lot of new topologies for NoC architecture have been proposed in the 

literature.  This includes the introduction of additional links, some long links, and 

providing wrap-around links for each pair boundary module.  NoC is becoming a 

more and more popular solution to accommodate a large number of IP cores in a 

network [17].  Due to its significance and importance for the technology nowadays, 

the research and development in this field has become really necessary. 

 

 

In this research, we are concerned in providing a significant contribution in 

this field in terms of routing process between each pair of the components place onto 

a routing board.  Routing process will result in a set of geometric path for each pair 

of components and when etched onto a PCB as routing tracks, electrical connectivity 

between these components is established.  Therefore, an automatic routing technique 

that improves board routability and reduces number of layers required for complete 

routing process is needed.  Three intelligent routing networks have been developed to 

perform connections between any two-terminal nets in the routing space, namely 

three-dimensional single-row routing conceptual model, mesh network to minimize 

number of layers for complete routing and fully gridded mesh network topology with 

the placement of obstacles, as well as semi-diagonal torus routing network for 

general purpose networking applications. 
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1.2 Motivation 

 

 

There are several reasons that motivate us to conduct research on this topic. These 

includes 

 

i. To the best of our knowledge, there is no literature available on the 

transformation of two-dimensional single-row routing into a dynamic 

three-dimensional problem and modeled single-row networks in a 

cylindrical shape. 

ii. Most of the routing method for global routing is an extension of Lee‟s 

algorithm. Therefore, another method, such as the shortest path-based 

algorithm is proposed to solve this routing problem. 

iii. Simulated annealing is a non-greedy probabilistic method but somehow, 

it always produces acceptable results and works well with combinatorial 

optimization problem compared to greedy method. 

 

 

 

 

1.3 Problem Statement 

 

 

The problem in this study consists of the development of intractable 

engineering routing problems.  Routing in a modern chip is a notoriously difficult 

problem, and even the simplest routing problem that consists of a set of two-pin nets 

is known to be NP-complete [19].  After the placement phase, a routing method will 

determine the precise path in the layout for source node S  to interconnect with its 

target node T .  These paths must satisfy the design rules and several constraints 

added to the respective problem.   

 

 

The main objective is to achieve 100% connections for each pair of nodes in 

the layout (henceforth regard as net), so that the chip will function correctly.  As the 

advancement in technologies growth, the complexity of the routing process also 

increases since a single chip may contain billions of transistors, and this number will 

still grow in the near future [19].  This increasing complexity has made the research 
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on VLSI routing received much attention in the literature.  Basically, the inputs for a 

routing problem are as follows: 

 

i. A placed layout with fixed locations of nodes. 

ii. A netlist which is a set of nets routing requirement. 

iii. A set of design rules for manufacturing process. 

iv. A timing budget for each critical net. 

 

 

From these inputs, at the end of the routing process, we are expected to 

generate the connections for each net that meets the design rules and optimize the 

respective objective function. 

 

 

 

 

1.4 Research Problems 

 

 

Several problems that have been studied in this research include:  

 

i. How to transform the two-dimensional single-row routing problem into a 

three-dimensional dynamic model? 

ii. Given a network topology, how to route given a set of two-pin nets in 

such a way that the paths do not overlap? 

iii. For a general mesh network topology, how to route the nets when the 

routing platform is utilized with the placement of obstacles? 

iv. What is the extension to the original mesh topology to make it suitable for 

Network-on-Chip interconnection network? 

v. How is the performance of semi-diagonal torus network when using our 

proposed routing algorithm? 
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1.5 Research Objectives 

 

 

The objectives of this research are: 

 

i. to model an ordinary single-row routing problem into a dynamic 

cylindrical model. 

ii. to develop a routing method that uses shortest path-based algorithm and 

simulated annealing technique. 

iii. to utilize grid routing graph with the placement of obstacles. 

iv. to compare the performance of mesh and torus network with a more 

scalable and regular network, which is a semi-diagonal torus network 

(SD-Torus). 

v. to compare the propose routing technique with greedy method. 

 

 

 

 

1.6 Scope of the Study 

 

 

This research is bounded by the followings: 

 

i. The proposed solution space is three-dimensional in terms of design. 

ii. The proposed solution is based on approximated methods. 

iii. The parameters that are investigated in this study are initial temperature, 

temperature reduction rules, temperature setting schemes and stopping 

criteria. 

 

 

 

 

1.7 Significance of Findings 

 

 

This study has contributed some new ideas in the field of optimization 

problem in VLSI design.  Through this study, three models have been proposed to 

perform routing in various branches of VLSI designs, namely single-row routing, 

global routing and interconnection networks.  The first model is a conceptual model 
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called SA-CM (Simulated Annealing for Cylindrical Model), which is the 

transformation of an ordinary single-row routing problem into a dynamic cylindrical 

model, which no one has done this before.  For routing problem in mesh, a network 

topology called SA-RM (Simulated Annealing for Rectangular Mesh) is proposed.  

Through this topology, two cases have been considered.  The first case is a layer 

minimization network without placement of obstacles and the second one is a full 

gridded routing model utilized with blocks of obstacles.  A significant routing 

method has been developed for both cases.  From the result, it can be observed that 

there is a specific scheme of net ordering to encounter these two cases. The 

performance comparison of mesh and torus networks with a more scalable and 

regular network, which is a semi-diagonal torus network (SD-Torus), has also been 

studied and SA-SDT (Simulated Annealing for Semi-Diagonal Torus) routing 

network is proposed in this routing problem.  Last but not least, the contribution is in 

terms of copyrights from papers and possible innovation and development of a 

tangible product from the work.  Most of our research papers have been published in 

indexed local/international journals. Research papers have also been presented in 

international conferences (see Appendix). 

 

 

 

 

1.8 Research Workflow 

 

 

Our research work begins with the transformation of a two-dimensional 

single-row routing (SRR) into a three-dimensional conceptual model.  Firstly, 

possible shapes to model this transformation have been studied.  Then, a cylindrical 

design has been chosen due to its symmetrical properties along with an infinite 

number of planes due to the fact that its cross-sectional area is that of a circle.  This 

differs with other shapes that have limited lines of symmetry such as hexagon, 

octagon and others.  This property is very important in order to allow the 

configuration of the nets to change according to pin connection requirements, thus 

making it a dynamic model.  Several properties of this cylindrical model also are 

studied. 
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Then, the maximum possible net ordering for general n  number of nodes and 

produced an inductive relationship has been determined.  An optimal result for a 

single-layer network has been achieved through Enhanced Simulated Annealing 

technique presented in [20].  Therefore, we are motivated to broad the SRR concept 

by proposing this transformation.  The method in [20] has been studied and 

implemented to produce optimal configurations for each SRR network producing 

SA-CM model. 

 

 

In the second part of our research work, another type of routing technique in 

the chip design has been studied, which is global routing.  In this problem, our 

routing platform is assumed to be divided uniformly into 
x yN N and the resulted 

routing graph is considered as an array of mesh-connected processors.  This network 

is called as SA-RM and is further split into two cases.  In the first case, we consider 

SA-RM network topology to minimize the number of layers to achieve a complete 

routing.  For the second case, the network is further utilized with the placement of 

obstacles. The problem is mainly about performing connections for each pair of 

nodes in the graph, and the path taken must follow the communication links.  This 

will allow for a simpler representation even though it reduces freedom during 

routing. The main objective of this problem is to seek the maximum number of 

connections while minimizing the level of congestion throughout the region.  Then, 

the objective function for this problem has been developed.   

 

 

In this study, it is important to have all pins connected in the shortest way to 

reduce the energy level in the routing region.  Therefore, several possible methods 

have been studied for this purpose.  Most of the routing algorithm reported in the 

literature is an extension to Lee‟s algorithm [21].  Even though it guarantees to find 

the minimum cost possible path if it exists, its searching nature based on wave 

propagation is slow. Therefore, we are motivated to use Dijkstra‟s algorithm, which 

is based on a Breadth-first Search method.  Then, to further refine the sequences, 

simulated annealing method, a metaheuristic method, is applied. 
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When solving the routing problem in mesh network, several drawbacks of 

this topology have been noticed.  It is a powerful candidate for general-purpose 

routing due to its simplicity and easy to implement.  However, when designing a 

network topology for Network-on-Chip (NoC), it is the worst in this class.  Its 

limited number of communication links degrades the performance as the network 

size increases.  Several outstanding topologies in the literature have been studied and 

it has been noticed that regular and symmetrical interconnection networks lead to a 

better implementation in terms of their routing algorithm and routers as well [22-23].  

Therefore, a routing network called SA-SDT which is based on a semi-diagonal torus 

network, a symmetric and more scalable network as proposed in [24] is discussed.  It 

is a mixture of mesh and torus networks in topology.  With the same objective 

function as in mesh routing problem, the proposed routing algorithm has been re-

applied and the results have been compared with mesh and torus networks.  All of 

the research work is summarized in Figure 1.5. 
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1.9 Thesis Outline 

 

 

This thesis is divided into six chapters, which include the introduction, 

literature review, a three-dimensional cylindrical model for a single-row dynamic 

routing, sequential global routing problem in VLSI, a semi-diagonal torus network 

for general purpose networking applications, as well as concluding remarks and 

further works.   

 

 

In the first chapter, the introduction to the whole thesis is given, including the 

research background, problem statement, research objectives, scope of the study, 

significance of the findings and research workflow. 

 

 

Chapter 2 presents the literature review of this research.  In this chapter, an 

overview of the single-row routing technique, global routing problems, as well as its 

routing method and network topologies are described.  Various works by different 

researchers regarding this topic is presented and an overview of our proposed method 

is also discussed. 

 

 

Chapter 3 focuses on the SA-CM conceptual model, a transformation of a 

single-row routing technique, which has its main application in the printed circuit 

board design where the nets between the pins are drawn statically, that is, in a fixed 

manner.  A new dynamic single-row routing model for the switching of pins based 

on the cylindrical design also is discussed.  The single-row routings in each network 

are produced optimally using the earlier model called ESSR (Enhanced Simulated 

Annealing for Single-row Routing).  

 

 

Next, in Chapter 4, another type of routing technique for the process of 

automatic design in printed circuit boards (PCBs) is discussed, which is called global 

routing.  In this chapter, a routing method is proposed based on Dijkstra‟s shortest 

path algorithm and simulated annealing technique onto a mesh network model called 

SA-RM.  This problem is further split into two cases.  In the first case, a fully 

gridded model is considered to minimize the number of layers, whereas in the second 
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case, the earlier network topology is utilized with the location for all blocks with 

pins on the boundaries representing obstacles. 

 

 

In Chapter 5, a semi-diagonal torus (SD-Torus) network is discussed and SA-

SDT model is proposed.  This network is both symmetrical and regular, which made 

it very advantageous in the implementation process.  Its small network diameter also 

leads to lower network latency.  The comparison part is divided into two. First, the 

performance of SD-Torus is being compared with mesh and torus networks. 

Secondly, the performance of our proposed algorithm on SD-Torus is compared with 

greedy method. 

 

 

Finally, the last chapter presents the concluding remarks and further works of 

this research. Some recommendations for future research on the routing method, 

network topologies and few restrictions on the network are also suggested in this 

chapter.
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