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ABSTRACT 

Structural delineation is the main issue in the evaluation of carbonate 

reservoirs in structurally complex areas. Permeability is a critical reservoir parameter 

that influences well and/or reservoir performance and it is even more challenging 

when the reservoir is fractured. Oil Based Mud Micro Imager - resistivity of 

invading zone (OBMI-Rxo) is a high resolution curve that is sensitive to fluid 

mobility near the borehole wall and indicates invasion. However most operators are 

not using an accurate Rxo curve of OBMI for reservoir and petrophysical 

applications. After drilling it is important that the borehole stays in good shape, 

morevere, borehole instability will reduce the working life of the well. The main aim 

of this study is to design a workflow in order to establish an advanced formation 

evaluation in a carbonate fractured and clastic reservoirs. The entire workflow 

involved incorporating borehole images, petrophysical logs, Modular Formation 

Dynamics Tester tool (MDT), Xpress Pressure Tool (XPT) and cores  in 

characterizing fractured and non-fractured reservoirs. Image log data are processed 

and interpreted in the computer using a Geoframe software. The bedding, deviation 

survey and image logs are imported into the Bortex software and the heterogeneity 

analysis of reservoirs from borehole images is computed based on the same 

resistivity contrast principle than the layer delineation. Respectively, the Formation 

Micro Imager (FMI) and OBMI images are used to examine permeability and index 

mobility in conjunction with open hole logs. As a result, the answers provided by the 

FMI tool helped in understanding the reservoir structure, identify and evaluate 

fractures, visualize the rock texture, and complement coring programs. Single-well 

permeability distribution was demonstrated by the use of advanced image analysis. 

OBMI-Rxo helped to identify zones of higher permeability when combined with 

conventional induction logs and porosity logs. In addition, working on advanced 

borehole shape analysis improved information about the well condition.
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ABSTRAK 

Struktur delineasi menjadi isu yang utama untuk penilaian reservoir karbonat 

di kawasan berstruktur rencam. Ketertelapan merupakan parameter reservoir kritikal 

yang dapat mempengaruhi pelakuan telaga dan/atau reservoir dan ianya didapati 

lebih mencabar apabila reservoir mempunyai rekahan. Pengimbas Mikro Lumpur 

Dasar Minyak – kerintangan zon serbuan (OBMI-Rxo) adalah lengkuk beresolusi 

tinggi yang sensitif kepada pergerakan bendalir berhampiran dinding lubang telaga 

dan yang menunjukkan penyerbuan, kebanyakan operator didapati tidak 

menggunakan lengkuk OBMI-Rxo dengan betul pada reservoir dan bagi aplikasi 

petrofizik. Selepas penggerudian dijalankan, adalah penting untuk memastikan 

lubang telaga dalam bentuk yang baik. Tambahan pula, ketidakstabilan lubang telaga 

akan mengurangkan jangka hayat telaga tersebut. Tujuan utama kajian ini adalah 

untuk merekabentuk carta alir kerja tetap bagi penilaian formasi lanjutan untuk 

reservoir karbonat rekah dan juga klastik. Secara keseluruhannya, carta alir kerja ini 

untuk tujuan pencirian reservoir rekah dan bukan rekah adalah merangkupi imej 

lubang telaga, log petrofizik, ‘modular formation dynamics tester tool’, ‘Xpress 

pressure tool’ dan teras. Data log imej diproses dan diterjemah dengan menggunakan 

komputer dengan perisian ‘Geoframe’. Data dari lapisan, survei deviasi dan imej log 

diimport ke dalam perisian ‘Bortex’ dan kemudiannya pengiraan analisis 

keheterogenan reservoir daripada imej lubang telaga dilakukan berdasar kepada 

prinsip perbezaan kesamaan resistiviti berbanding deliniasi lapisan. Berkaitan log 

lubang telaga terbuka, pengimbas mikro formasi (FMI) diguna untuk menilai 

ketertelapan, manakala imej OBMI diguna untuk menilai indeks mobiliti. Sebagai 

kesimpulan, hasil yang diberi oleh alatan FMI didapati dapat membantu dalam 

penelitian struktur reservoir, mengecam dan menilai rekahan, memapar tekstur 

batuan, dan pelengkapan program penerasan. Taburan ketertelapan telaga tunggal 

telah dipapar dengan menggunakan analisis imej lanjutan. OBMI-Rxo membantu 

untuk mengenal zon ketertelapan tinggi apabila ianya digabungkan dengan log 

induksi konvensional dan log keliangan. Berkaitan kestabilan lubang telaga, kajian 

ini juga didapati dapat menambah baik maklumat tentang keadaan telaga apabila 

dijalankan analisis lanjutan bentuk lubang telaga.   
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

Outcrop study of the target formations/ reservoirs have a great importance to 

understand the possible geological (structural and sedimentological) and reservoir 

characteristics of the reservoir. These features are studied at different scales to 

determine their lateral and vertical extent and distribution. This is mainly achieved 

by various technologies, such as, Brunton compasses/Inclinometers, topographic 

maps, aerial photographs, and satellite images. A similar approach is needed for 

delineating and characterizing the reservoirs in the subsurface. The large scale 

subsurface features are delineated with the surface seismic (2D and 3D) techniques. 

However, the coarse resolution (generally greater than 10 m) of these techniques 

does not allow for feature identification of smaller scales (for instance, cross 

bedding, bedding, fractures, and vugs/moulds) that are very useful for detailed 

characterization of reservoir rocks.  

Borehole images are very useful in cases where information on geological 

(structural and sedimentological) and reservoir features are required. Structural dip 

by definition is the present day formation dip used to build the structural cross 

section. It is also a record of the post-depositional structural alteration and may 

indicate the tectonic history of the sequence. It is not an average dip for all the 

bedding planes. Apart from structural analysis, the investigation of fractures is the 

main application for image logs in Dezful Embayment, Iran. Information on 

fractures is important to know because of their higher permeability, hence their 
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biggest influence on reservoir producibility. Schlumberger provides high quality 

borehole images in wells drilled with all types of mud; water based mud and oil 

based mud. These images can be acquired in wells of all geometries ranging in 

deviation from 0.0 degrees to more than 90 degrees. It is now possible to get 

resistivity of the invaded zone (Rxo) in the wells drilled with oil-base mud using the 

state-of-the-art imaging tool called the Oil Base Mud Imager (OBMI) 

(Schlumberger, 2005). By using advanced interpretation, it can compute 

permeability from the borehole images in carbonates. 

This study highlights the importance of data integration and borehole images 

in the domains of geology, petrophysics, geomechanics/drilling, reservoir and 

production engineering in different oil fields of National Iranian South Oil Company 

(NISOC). Borehole images logged in Asmari and Sarvak reservoirs from the NISOC 

fields like Lali, Gachsaran, Marun, Mansuri and Pazanan are discussed (Figure 1.1).  

 

Figure 1.1 Studied oilfields (red colored) in Dezful embayment.  
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The Asmari formation consists of limestones, dolomitic limestone, 

argillaceous limestone, and anhydrite and the lithology of Sarvak formation is 

limestone and it lies below Ilam reservoir (Motiei, 1993) (Figure 1.2). Our research 

establishes a technique to increase the reservoir explanation of the Asmari and 

Sarvak reservoir by using a new application of image logs.  

 

Figure 1.2 Asmari and Sarvak reservoirs in Iran (Bosold et al., 2005). 
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1.2 Problem Statement  

The crossing Asmari reservoir is not so easy in some cases due to structural 

complexities, where there is a thick pile of evaporates of Gachsaran formation over 

the reservoir. In some wells, higher than the expected thickness of formations is 

found. Dip classification based on a geological log has the advantage of providing a 

direct representation of structural origin and identify Asmari fault and fracture 

systems and its influence on production and resolve structural complexity. 

Fracture intensity and deep rooted fractures extensively increase risk of 

unexpected water production. So, it is vital to know, whether reservoir is fractured or 

not. If it is fractured then what is the kind of fractures (open or closed) and what is 

their intensity? Do they occur as a single set or multiple sets and what orientation is 

their dominant strike? Solutions to questions like these support geologists and 

reservoir engineers increase oil production (Movahed et al., 2014) and in this study 

the borehole imaging tools, like the Formation Micro Imager (FMI), Oil Base Mud 

Imager - Ultrasonic Borehole Imager (OBMI-UBI) are interpreted to find solutions 

for fracture systems and fracture attributes. 

Permeability analysis of dual porosity systems with heterogeneous 

distribution of dissolution fabrics can evaluate by using the FMI, but NISOC is not 

using permeability from FMI in a case when there are no any formation testing data 

in the well for fracture and reservoir modeling. In this study, image logs provided the 

most representative measurements in geological and petrophysical heterogeneous 

formations and present a method to measure permeability from FMI in Asmari and 

Sarvak reservoirs. 

OBMI-Rxo is a high resolution curve that is sensitive to fluid mobility near 

to the borehole wall and which indicates invasion and indirectly lithology, but 

NISOC is not using   an accurate Rxo curve of OBMI for reservoir and petrophysical 

application. This method using resistivity classes is used to show how the high 

resolution OBMI curves can be used. The result of this research demonstrates the 
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new analytical method to evaluate a fractured carbonate and clastic reservoirs from 

Iran. 

The most wells drilled in Iran suffer from geomechanical hazards owing to 

the high in–situ stress related to the proximity of the Zagros Mountain and it is not 

always possible to acquire wireline log data because of the borehole condition 

(Movahed et al., 2014). In this study, advanced borehole shape analysis by using 

FMI and UBI helped regarding borehole instability and improved information about 

the well condition. 

1.3 Objectives of the Research 

The objectives of the research are given below:  

1. To develop an accurate structural model for Asmari reservoir. 

2. To characterize fractures in the borehole. 

3. To compute reliable index mobility from OBMI and index 

permeability from FMI. 

4. To evaluate the borehole condition in order to reduce drilling risk and 

avoid potential well bore damages. 

1.4 Scopes of the Research 

Borehole images were integrated with other data (petrophysical, reservoir, 

and geophysical) to understand the various characteristics of the Asmari both in oil 

based mud and water based mud systems. In this study, borehole images are used to 

solve different issues in geology, petrophysics, reservoir engineering, production 

engineering, sedimentology, geomechanic and drilling in NISOC oil fields that is 

explained in the following: 
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1. Image log data are processed for a number of factors that may affect 

the quality of the images in Geoframe. Such factors include: variation 

in speed of the tool relative to the drill-pipes, or cable speed; sticking 

of the tool. Additionally, image logs are equalized and normalized to 

improve the information of features in it. Interpretation typically 

started with hand picking dips using sinusoid techniques on image log 

presented at 1:20 or 1:10 scale so that the geological features are 

easily visualized. Once dips have been picked they have to be 

classified into bed boundaries and fractures.  

2. Interpreting structural dip resolved structural complexity, thus 

provided the exact location of the well in the Asmari reservoir, which 

could not reach the lower contact of Asmari by interpreting FMI 

images and petrophysical logs in wells LL-26. 

3. The structural dip from PZ-126 was used as input for permeability 

analysis and it was imported into the Bortex module and computed 

reservoir heterogeneity from FMI used to extract heterogeneities and 

layer details from images. In addition to formation heterogeneities, 

the software also calculated index permeability of the reservoir. 

Fracture properties (open or closed), occurrence, orientation, spacing, 

and porosity were interpreted by using Image log and imported as 

indirect input for permeability analysis.   

4. The OBMI structural dip data is imported into the Bortex software in 

the MN-322.OBMI tool was used to identify zones of higher 

permeability when combined with conventional induction logs and 

porosity logs. Separation between Rxo curves (one from each of four 

OBMI pads) and induction logs, due to invasion of oil in the mud, 

indicated higher permeability.  

5. The borehole cross sections are interpreted to give a very detailed 

account of the in-situ stress conditions by using UBI.  
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