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ABSTRACT 

 

 

 

 

Object detection is an essential process for further tasks including, but not limited to, 

object and event detection, object tracking, object recognition, video indexing, motion 

estimation, image restoration, image registration, image retrieval, and reconstruction of 3D 

scene. In the recent past, interest point detectors and their descriptors, as local features, have 

received a great interest in computer vision areas and technologies. These types of features 

have shown their robustness against different types of deformation due to geometric 

transformation, photometric transformation and other disturbances. Therefore, they are more 

accurate and stable than the global ones. Among all interest point detectors and descriptors, 

the Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF) are 

considered as the most common methods that receive interest from researchers in terms of 

usage and development;  but, getting more accurate, invariant and fast descriptor is still 

needed. Matching technique is often used to recognize the object based on such features; 

however, it is not proper for some applications such as searching for an isolated object and it 

is difficult to be used in object category recognition or to recognize the part-based object. 

Therefore, learning-based technique, that has been proven to be an effective method in object 

detection, can be used to overcome the previously mentioned challenges. However, the 

object required to be detected usually represents a small ratio compared to non-object that 

causes an imbalanced data problem. The aim of this study is to design and develop an 

effective model for object detection that is faster, more accurate and it can manage 

aforementioned challenges. To achieve this goal first,    new fast and an accurate descriptor 

is introduced based on interest points; second, an effective classification method, that 

mitigates the effect of imbalanced data, is designed based on developed ensemble classifiers; 

third, an updating scheme of interest point detector is presented to speed up the object 

detection system. Results show that the proposed features are faster and more invariant than 

the most common interest-point-based features. The developed technique based on ensemble 

classifiers produces notable results in terms of accuracy and False Positive rate compared to 

the traditional one. The speed of object detection system has increased by 30% in average 

based on the proposed scheme.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction  

 

 

Computer vision (CV) is an area that includes approaches and techniques 

to acquire, process, analyze, and understand an image. Moreover, it produces a 

new form of symbols information as high-dimensional data from the natural 

world for further decisions (Morris, 2004). The idea of developing this field is to 

inspire the abilities of human vision to understand an image by machine (Sonka, 

2007). Therefore, an image can be understood by seeing it in another form (i.e. 

numerical or symbolic information), this information can be extracted by using 

specific models such as geometry, statistic, learning technique or by combining 

two or more  methods (Forsyth and Ponce, 2002). Additionally, CV is a relatively 

new area and has great relationship with many other fields such as Machine 

Learning, Physics, Control Systems, and Medical Imaging. Therefore, it is 

reasonable that CV has been rapidly developed into many kinds of sub-fields 

(Calonder, 2010a). Sub-fields of computer vision include, but not limited to, 

reconstruction of scene, object and events detection, object tracking, recognition 

of an object, video indexing, motion estimation, and image restoration. 

 

 

One of the most important processes in CV is the object detection because 

it is essential process for many other applications such as object tracking, object 

recognition, object categorization, event detection, and searching for object in 
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sequence of images or video. In addition, detecting and finding a specific object 

in sequence images or video has become an increasingly important problem with 

numerous applications, especially with the popularity of smart phones and other 

devices. That includes searching for people, buildings, landmarks and other 

interest objects for further analyzing and decisions (Aly, 2011). 

 

 

 

 

1.2 Problem Background 

 

 

Visual object detection is an extremely troublesome computational issue. The 

main problem is that each object in the world can cast an unbound number of diverse 

2-D images onto the retina as the object's position, pose, lighting, and background 

changes in respect to the viewer (DiCarlo and Cox, 2007). The variations occurs due 

to the deformations of non-rigid, and intra-class variability because of shape and 

other visual properties, also increase the difficulty of tackling this problem 

(Felzenszwalb et al., 2010). Furthermore, the quality of object detection (detection 

rate, precision, error) and time consumption add more difficulties to object detection 

system in which they are trade-off problems. 

 

 

Full object detection system normally consists of three main elements; 

features, recognition, and localization. Features can be divided into two types, 

according to the area (spatial) that they are taken from, and the methods of feature’s 

acquisition. Features based on spatiality can be global or local (Aly, 2011; Li B. et 

al., 2011; Pang et al., 2012); while the ways of getting features can be categorized 

into three types; extraction, selection, composition features (Lillywhite et al., 2012b). 

 

 

Recognizing an object can be done based on either matching or learning 

technique. Matching technique recognize the object based on the distance between 

the features of the target and the template stored.  On the other hand, the learning 
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technique is a way to build a system that mimic the human ability of learning from 

examples and it can recognize unknown instance based on prior knowledge and 

experience. Machine learning techniques can be classified into two types; single-

based and ensemble-based techniques (Xu et al., 2011; Zhang X. and Cheng, 2012). 

In single-based method, only one algorithm is used to learn and classify the instance 

(Xu et al., 2011). On the other hand, the ensemble-based approach uses a several 

algorithms in a certain arrangement to get the final decision of instance recognition 

(Ceamanos et al., 2010; Galar et al., 2012; Liu and Wang, 2010; Rahman and Verma, 

2011; Verikas et al., 2010; Xu et al., 2011). 

 

 

Features play an important role in object detection and affect directly on the 

quality of detection  (Yilmaz et al., 2006). For any object detection within an image 

based on features, object needs to be represented by features as a first process by 

which can be used later in the classification phase (Aly, 2011). Features can be 

divided into two types; global and local.  

 

 

Global features: where an image can be represented by extracting features as 

one dimension which describe the whole image. Information extracted might be 

histogram of color (Forsyth and Ponce, 2002), or histogram of orientation as in 

(Dalal and Triggs, 2005). global features are fast and easy in computation which is 

considered advantage over local features, but they perform worse than local features 

in term of accuracy (Douze et al., 2009).  

 

 

Local features: where the features that represent image are extracted from a 

set of regions by specific descriptor. Generally, there are two steps to extract the 

local features which are feature detection and feature description (Forsyth and Ponce, 

2002; Mikolajczyk and Schmid, 2004a). Feature detection involves detecting interest 

locations in the image (i.e. corners and edges). Feature description is to describe the 

image patch that surrounds the interest point; this can be done by histograms of 

gradients or orientation. There are different types of feature detectors; however 

among the most well-known ones are Difference of Gaussians (DOG) which was 
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presented by  Lowe (2004), Hessian-Affine and Harris-Affine which were introduced 

by Mikolajczyk and Schmid (2004), and SURF which brought by Bay et al. (2008) 

and it is relatively new. Similarly, there are many feature descriptors, SIFT and 

SURF are the most widely used because of their performance. The local features 

have superior performance over the global ones; but with large memory usage 

(Douze et al., 2009). 

 

 

Among all local features, SIFT and SURF are the dominant features over all 

others in this field in terms of robustness and invariance (Li H. et al., 2013; Pang et 

al., 2012). However, the high dimensionality and computation complexity of such 

features consume a large amount of space (memory) and take longer time in 

recognition, especially against large-scale dataset e.g. SIFT. Besides, SURF 

descriptor might not make use the full information about the interest point ( Li H. et 

al., 2013); further, SURF has limitation regarding scale changes in case of zoom-out 

variant (Bay et al., 2008). So, these factors are challenges in some applications 

especially in real-time and mobile-based applications (Heinly et al., 2012; Li H. et 

al., 2013; Rister et al., 2013). These challenges give a motivation to introduce new 

features by converting the original features of SIFT or SURF into a new binary form. 

Examples of such binary-based features include, Binary Robust Independent 

Elementary Features (BRIEF) (Calonder et al., 2010b), Oriented FAST and Rotated 

BRIEF (ORD) (Rublee et al., 2011), and Binary Robust Invariant Scalable Key-

points (BRISK) (Leutenegger et al., 2011).  Binary-based methods introduced 

features that are faster and easy to be computed, however, they still inaccurate, 

instable, and less descriptive than the original ones (Heinly et al., 2012; Ni, 2012).  

 

 

Regarding the object recognition; matching technique is used to find the 

corresponding points between two images depending on the distances between the 

accompanying features. It is common technique used in object recognition and image 

registration (Brown et al., 2011). But, computing the descriptor and using the 

matching against large database adds more complexity to the recognition system 

(Gauglitz et al., 2011). It is also difficult to be used in object category recognition or 
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to recognize the part-based object. Moreover, it is not proper for some applications 

such as searching for an isolated object (Gauglitz et al., 2011). 

 

 

As alternative to the matching technique, the learning-based technique, it has 

proven to be an effective method in object detection (Qiu et al., 2012). It is used 

successfully in category classification especially discriminative-based learning (Gu 

and Ren, 2010b), also researchers are paid more attention to design method that learn 

the interest point features (Li B. et al., 2011). Examples of such techniques are, 

Artificial Neural Network (ANN), boosting, decision trees, and Support Vector 

Machines (SVM) (Porikli and Yilmaz, 2012). 

 

 

Since the data in object detection is an imbalance, this is a big challenge facing 

the learning-based methods as a single learning because the single-based method 

expect that all classes have the same distribution (He and Garcia, 2009; Sun et al., 

2009), which leads to poorly accuracy of classification (Ceamanos et al., 2010; Galar 

et al., 2012; He and Garcia, 2009; Sun et al., 2009). Therefore, most conventional 

(standard or single-based) methods fail to be an effective to fix such problem 

(Ceamanos et al., 2010; Galar et al., 2012; He and Garcia, 2009). 

 

 

To tackle this challenge, ensemble-based techniques are proposed to improve the 

accuracy of the classification (Ceamanos et al., 2010; Galar et al., 2012), and to 

reduce the effects of imbalanced data on the classification quality (Galar et al., 2012; 

Zhang X. and Cheng, 2012; Zhang Y. et al., 2012). however, this type of learning has 

structure complexity and need longer time than single-based learner (Xu et al., 2011). 

 

 

Based on the afore-stated issues; Figure 1.1 summarizes the advantages, 

limitation of each parts of object detection system and the scenario that led to the 

study problem. 

http://www.thesaurus.com/browse/conventional


6 

 

 

Adv.=Advantages, Disadv.=Disadvantages 

 

Figure 1.1 : Scenario that led to the study problem 
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technique should be: Accurate, Fast, and Manage and reduce the effect of imbalance 

data on recognition quality. 

 

 

 

 

1.3 Problem Statement 

 

 

Full object detection system consists of three parts, features extraction, object 

recognition, and object localization. Most researches in literature focus only on one 

part of the whole system; each part affects the performance of the object detection 

system to some degree. Moreover, other challenges such as changes in rotation, 

scale, and imbalanced data effect are also affecting and complicating the system 

structure. Therefore, the performance of object detection system could be improved 

by introducing a new descriptor that produces fast, distinctive and invariant features, 

reducing the effect of imbalanced data by improving ensemble-based learning 

technique, and modifying the original interest points’ detector by which the system 

can be carried out faster. 

 

 

 

 

1.4 Research Questions 

 

 

Research questions are: 

 

(i) How to overcome the shortages of existing descriptors in terms of 

accuracy and time consumption. 

(ii) How to tackle the imbalance data and gain a high quality of recognition. 



8 

 

(iii) How to further reduce the detection errors; False Positive Rate (FPR) and 

False Positive (FP), and keep enough interest points for object 

localization. 

(iv) How to speed up the whole system of object detection without impact on 

precision of detection. 

 

 

 

 

1.5 Research Aim 

 

 

The aim of this research is to introduce a general model for object detection 

in which it can overcome the limitation of existing methods regarding the descriptor, 

classification, and speed. The proposed model consists of three parts; first, new 

descriptor based on interest point detectors which is fast and accurate in the same 

time; second, an ensemble-based improved learner based on ANN technique applied 

on different environments; third, an improved scheme to speed up the object 

detection system; all are integrated in one model. 

 

 

 

 

1.6 Research Objectives 

 

 

The objectives of this research can be summarized as follows: 

 

(i) To propose a new local descriptor that is faster and more accurate than the 

most common existing descriptors taken into account the stability under 

different conditions such as changes in scale and rotation. 
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(ii) To develop an effective supervised learning technique to learn the 

features of the proposed descriptor in (i) based on an ensemble learning in 

which it can increase the accuracy, reduce the error, and tackle the 

imbalance data challenge.   

(iii) To propose a developed scheme that speed up the whole system resulting 

of the complexity in (ii) with no cost in quality of recognition.   

 

 

 

 

1.7 Research Scope and Assumptions 

 

 

Study scope and assumptions are as follows: 

 

(i) Objects used in this study are; human faces and cars. 

(ii) Scenes and environments in which the object is detected are: 

a. Indoor and outdoor for faces detection. 

b. Street and open space for cars detection. 

(iii) Datasets used are: 

a. Caltech 101 “faces”; for learning and testing. 

b. PASCAL VOC 2009 “cars”; for testing. 

c. SUN397; for learning. 

d. Data for cars learning was collected by the researcher. 

(iv) Measurements used in this research are: Correct classification Rate 

(CCR), True Positive Rate (TPR) or Detection Rate (DR), False Positive 

Rate (FPR), Precision, and False Positive (FP) or 1-Precision. The detail 

in chapter 3. 
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(v) Comparisons done as follows: 

a. Comparing the proposed descriptor against SIFT and SURF 

descriptors based on measurements mentioned in (iv); besides, 

comparing the invariance to rotation and scale changes. 

b. Comparing the ensemble-based classifiers against single-based 

classifier. 

c. Time consumption comparisons; the proposed descriptor against SIFT 

and SURF descriptor, and the proposed scheme (that speed up the 

object detection system) against ensemble-based classifiers. 

(vi) T-test was used to validate the obtained results regarding the FP error. 

 

 

 

 

1.8 Research Significance 

 

 

Object detection and its application play an important role in different fields 

as mentioned earlier; thus, this research takes the same importance beside the 

additional characteristics as follows: 

 

(i) Usability: system can be used to detect any object by only providing 

positive and negative examples into the system; no extra changes are 

needed. 

(ii) Development: different types of points’ detectors can be used if there, the 

structure of the model remains unchanged. In addition, easy to change the 

classifier used by another or adding another one beside the existing one, 

model structure remains also unchanged. 
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1.9 Summary of Research Contributions 

 

 

Contributions of this study can be summarized as follows: 

 

(i) A new local descriptor that is fast, accurate and overcome the existing 

descriptors in terms of speed, accuracy, and invariance. 

(ii) A developed learning technique based on ensemble learning that 

produced higher accuracy than single-based learning technique and fixed 

the imbalance data problem. 

(iii) A developed scheme that speeded up the object detection system by 

modifying the original SURF point’s detector. 

(iv) Tow labelled datasets prepared from datasets mentioned in section 1.7 for 

training and testing phases.      

 

 

 

 

1.10 Terms Definition 

 

 

Due to using some terms in different domains, misconception or confusion may 

occurs; thus, this section provides the definition of terms used along this study, these 

definitions were taken from literature detailed in chapter 2. 

  

 

(i) Interest Point 

The most important point that can repeatable over scale-spaces, it can be 

edge or corner; sometimes it called key-point. 

(ii) Detector 
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It is the method that detects the interest point. 

(iii) Descriptor 

Descriptor is the method that describe the detected interest point; 

describing the interest point means extract the substantial information 

about that point. Sometimes the method called extractor and the extracted 

information called feature. 

(iv) Object Recognition 

Object recognition is this study means, distinguishing the patterns that 

belonging to the object class from that they are not; it answer the question 

“Is there object within scene or not?” This includes the matching 

technique and learning methods. 

(v) Object Localization 

Objection localization means if there an object exist within scene, 

determine the location of that object; so, it answer the question “Where 

the object location within scene?” 

(vi) Object detection 

The meaning of object detection embodies both object recognition and 

localization altogether. 

(vii) Single-based classifier 

Normally, single-based classifier means only one classifier used for 

learning and classification of patterns; sometimes it called traditional or 

conventional method. 

(viii) Ensemble-based classifiers 

Ensemble-based methods often refer to a collection of classifiers, either 

by combining different classification techniques or variants of the same 

technique.   
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(ix) An imbalanced data 

Data that has minority and majority among its classes is called 

imbalanced data; that’s mean the distribution of instances for classes is 

not equal.  

 

 

 

 

1.11 Thesis Outline 

 

 

This thesis consists of 7 chapters organized as follows: Chapter 1 introduces 

an overview on object detection system and its applications; besides, still problems 

and challenges, problem statement, study questions, study objectives, scope of the 

study, the aim and significance of the study  and study contributions, all were 

explained.  Chapter 2 illustrates the literature review and related studies to object 

detection, this includes the challenges with respect to features, recognition, 

localization, datasets, and evaluation measurements used in this area; in addition, the 

proposed solution in literature for each and still challenges. The research 

methodology of this study is illustrated in Chapter 3. Chapter 4 describes the 

proposed descriptor in detail which then integrated with a traditional classification 

technique as one model. Chapter 5 presents the solution for imbalanced data problem 

by developing an effective technique based on ensemble classifiers. A developed 

scheme for speeding up the object detection system is introduced in Chapter 6. 

Research summary, contributions, and the suggestions for the future work are 

detailed in Chapter 7. 
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