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ABSTRACT 

 

 

 

 

The reliability of a buried steel pipeline is strongly influenced by external 

corrosion due to soil. However, the external corrosion does not affect the pipeline 

equally at all locations and corrosion does not grow at the same rate throughout a 

pipeline. Therefore, the need of reliable predictive corrosion model is of great 

interest among researchers and engineers. The available current models are relying 

on huge historical data storage; thus, massive excavation works, equipment and 

technical expertise are required. In addition, the feasibility of these models for 

practical application in different regions with different climate and soil conditions still 

remains unknown. Therefore, this research aims to develop a predictive model for 

underground corrosion with the improved multi-parameter models in which several 

soil characteristics are considered without the need for a return trip to the field, on-

site excavation and the presence of technical expertise. Moreover, the models 

developed in this study are based on empirical results reflecting a wide range of 

exposure conditions suitable for Malaysia’s site conditions through Component 1 and 

2. Two predictive corrosion models based on power law equation were developed 

using two different approaches at two different locations namely real and simplified 

sites. The most common applied model used to predict corrosion loss is the power 

law model (P = kt
v
), where t is exposure time, and k and v are constant regression of 

soil parameters. There are a total of 932 mild steel coupons being buried in soil up to 

18-month period in 5 different locations and 65 soils samples were analysed for its 

contents and engineering properties. The results were analysed using statistical 

methods such as exploratory data (EDA), single linear regression (SLR), principal 

component analysis (PCA) and multiple linear regression (MLR), while Component 

3 was conducted to verify the models using two-way ANOVA (Analysis of 

variance). From the analysis, the extraction of soil variables related to k and v were 

successfully obtained. In order to get the best fit of predictive model, the extracted 

variables are modelled using MLR with 20 combinations of linear equation and 

embedded in the power law equation. The model revealed that chloride (CL), 

resistivity (RE), organic (ORG), moisture content (WC) and pH were found to be the 

most influential variable in predicted mass loss, k while sulphate content (SO), 

plasticity index (PI) and clay content (CC) appear to be influential with v. The 

predictive corrosion models based on data from real and simplified sites have yielded 

reasonable prediction of metal mass loss with R
2 

score
 
of 0.89 and 0.81 respectively. 

This research has introduced innovative ways to model the corrosion growth for 

underground pipeline environment. Moreover, heavy statistical analysis has been 

utilised to determine the level of influence of soil contents and its engineering 

properties towards soil corrosivity. The model enables to predict potential metal 

mass loss, hence the level of soil corrosivity for Malaysia. The knowledge on soil 

corrosivity may assist pipeline operators in designing effective corrosion mitigation 

program for their underground assets. 
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ABSTRAK 

 

 

 

Kebolehtahanan saluran paip keluli bawah tanah amat dipengaruhi oleh 

kakisan luaran yang disebabkan oleh tanah. Walaubagaimanapun, kakisan luaran ini 

tidak menjejaskan kakisan yang sama di semua lokasi dan ia tidak berkembang pada 

kadar yang sama sepanjang saluran paip. Oleh itu, keperluan model ramalan kakisan 

amatlah menarik minat para penyelidik dan jurutera. Model kakisan yang sedia ada 

kebanyakannya bergantung pada simpanan data yang banyak, ini memerlukan kerja-

kerja penggalian serta peralatan yang besar dan kepakaran operator saluran paip. 

Tambahan pula, kesesuaian model-model tersebut bagi kegunaan di rantau yang 

berbeza dari segi iklim, muka bumi, dan keadaan tanah masih menjadi tanda tanya. 

Oleh itu, kajian ini bertujuan untuk membangunkan model kakisan yang lebih baik 

untuk meramal kadar kakisan dalam tanah dengan mengambilkira sifat kimia dan 

fizikal tanah tanpa memerlukan perjalanan balik ke tapak, penggalian di lokasi serta 

kehadiran kepakaran teknikal. Selain itu, model yang dibangunkan dalam kajian ini 

juga adalah berdasarkan kepada keputusan empirikal yang mencerminkan pelbagai 

keadaan pendedahan yang sesuai bagi keadaan di Malaysia melalui Komponen 1 dan 

2. Dua model ramalan kakisan telah dibangunkan berdasarkan persamaan hukum 

kuasa dengan menggunakan dua pendekatan yang berbeza iaitu tapak sebenar dan 

simulasi. Model kakisan yang biasa digunakan adalah model hukum kuasa (P = kt
v
), 

dengan t ialah masa pendedahan, dan k dan v adalah pemalar regresi tanah. Sebanyak 

932 kupon keluli sederhana telah ditanam di dalam tanah selama 18 bulan di 5 lokasi 

yang berbeza dan 65 sampel tanah telah dianalsis kandungan kimia dan fizikalnya. 

Keputusan tersebut telah dianalisis dengan menggunakan kaedah statistik seperti data 

saringan (EDA), regresi linear tunggal (SLR), analisis komponen utama (PCA) dan 

regresi linear pelbagai (MLR), manakala Komponen 3 bertujuan sebagai pengesahan 

bagi model yang dibangunkan dengan menggunakan analisis ANOVA dua-hala. Dari 

analisis, pengekstrakan pembolehubah tanah yang berkaitan dengan k dan v telah 

berjaya diperoleh. Untuk mendapatkan model ramalan yang terbaik, pembolehubah 

yang telah diekstrak akan dimodelkan menggunakan MLR dengan 20 gabungan 

persamaan linear dan dimasukkan dalam persamaan hukum kuasa. Model ini 

menunjukkan bahawa, klorida, kerintangan, organik, kandungan kelembapan dan pH 

mempengaruhi pembolehubah k, manakala kandungan sulfat, indeks keplastikan dan 

kandungan tanah liat berhubungkait dengan v. Model ini telah menghasilkan ramalan 

degradasi keluli masing-masing sebanyak 0.89 dan 0.81 berdasarkan data dari tapak 

sebenar dan tapak simulasi. Kajian ini telah memperkenalkan cara yang inovatif 

dalam permodelan pertumbuhan kakisan paip keluli bawah tanah. Tambahan pula, 

analisis statistik berat telah digunakan untuk menentukan tahap pengaruh kandungan 

tanah dan sifat kejuruteraannya. Model ini juga mampu dalam meramal kehilangan 

jisim keluli dan juga tahap kakisan tanah di Malaysia. Dengan adanya pengetahuan 

mengenai kakisan dalam tanah, ia dapat membantu operator saluran paip dalam 

merekabentuk program mitigasi yang lebih berkesan dalam melindungi aset bawah 

tanah mereka. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Gas transportation via pipeline has been seen as an alternative in providing 

the cleanest, safest, most cost effective and reliable energy solution for the nation and 

consumers. For the purpose of security, safety, stability and supply continuity, all 

coated gas pipelines in Malaysia were buried under the ground and maintained by 

adequate levels of cathodic protection (CP). Although there are several forms of 

protection such as physical coating and CP, buried pipelines still experience 

corrosion attack. Without realizing it, the soil surrounding the pipe plays an 

important role in coating failure such as abrasion resistance, wrinkling, tearing, 

shifting, disbondment, blistering, etc. This implies soil corrosiveness as a form of 

external corrosion that poses a threat to buried pipelines. 

 

 

As mentioned by Amend [2009], the basic soil corrosiveness model is relying 

on soil resistivity as sole indicator. However, several technical resources show that 

the relationship is not consistent. Further mentioned by Papavinasam et al. [2010], 

the corrosion allowance is calculated either from the predicted corrosion rate and the 

design life of the pipeline or determined from experience. With the help of external 

model, it would assist pipeline operators in designing a maintenance programme and 

prioritizing the locations for assessment. Furthermore, modelling results can be used 

as a substitute for default corrosion rates when setting the reassessment intervals. 
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1.2 Problem Statement  

 

 

Most pipelines constructed in the last 60 years are still in operation, and most 

of them will continue safely operating into the future if properly maintained. In the 

field, one of the major mechanisms of failure of external corrosion is the soil itself. 

The problems are that these factors do not affect the pipeline equally at all locations 

and corrosion does not grow at the same rate throughout a pipeline. Currently, many 

established models are relying on bursting pipeline, coating failure, stress corrosion 

cracking and cathodic protection efficiency; therefore, huge excavation works are 

needed to obtain the data from the corroding pipeline that is still in operation. Most 

of the corrosion models from current researches demonstrated a full utilisation of 

historical record of metal loss measured on site during excavation. Nevertheless, not 

all pipeline operators keep the records since site excavation, purposely to measure 

the external metal loss on pipeline surface, is not a standard practice, highly costly 

and interruptive to the operation. Therefore, a simpler technique should be explored 

to record the on-site metal loss volume so as to provide valuable information to the 

modelling of underground external corrosion. 

 

 

For this reason there is desire to predict soil corrosiveness with the improved  

multi-parameter models in which several soil characteristics are considered without 

the need for a return trip to the field, on-site excavation and the presence of technical 

expertise. The models developed in this work are generally based on empirical 

results reflecting a wide range of exposure conditions suitable for tropical climate’s 

site conditions keeping in mind that the pipelines still are operating throughout the 

research duration. Even though previous researches have successfully developed a 

number of predictive empirical models for external condition of corroding pipelines, 

the feasibility of these models for practical application in different regions with 

different climate and soil condition is unknown. Hence, the need for a predictive 

corrosion model specially tailored for tropical soil condition.  

 

 

The corrosion rate of mild steel pipeline depends on the soils corrosiveness. 

These models are expressed as a power law pattern; d = kt
v
 where t is the exposure 

time, and k and v are metal loss constant and corrosion growth pattern over time 
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respectively, using a multivariate regression analysis known as all-factor-at-a-time 

(AFAT) approach. It was conducted with d as the dependent variable, and the soil 

physical and chemical properties as independent variables. As mentioned by Ricker 

[2010], so many diverse factors influence corrosion rates underground that planning 

of proper tests and interpretation of the results are vitally needed. Hence, accurate 

classification of soil parameters into the right group between both constant k and v 

has become a major issue. The classification of parameters related to soil chemical 

content and soil physical properties to both constant k and v has seen inconsistent 

results across the globe. Therefore, it is proposed to use the one-factor-at-a-time 

(OFAT) approach to provide better understanding of the degree of influence of soil 

chemical and physical properties towards dynamic corrosion growth particularly for 

Malaysian region. 

 

 

 

 

1.3 Research Aim 

 

 

Mild steel grade API 5L X70 are frequently used in transmission gas 

pipelines in Peninsular and West Malaysia. Understanding the effects of dynamic 

corrosion growth is essential for the integrity and reliability of these pipelines. 

Research focusing on developing the external growth rate model by correlating the 

growth of external corrosion based on corrosion rate and metal loss data gathered by 

steel coupons buried underground, soil engineering properties and soil chemical 

properties as reported herein, would increase the understanding of a pipeline 

structure and deteriorating effects of dynamic corrosion growth on structural 

integrity. The predicted external model is based on statistical modelling used to 

support external corrosion direct assessment (ECDA) and integrity management of 

buried pipelines in Malaysian soil conditions. As the model is based on all-factors-at-

a-time (AFAT) approach using a multivariate analysis, it requires less excavation 

works and is suitable for those researchers who do not have the luxury to access the 

historical record of metal loss data. 
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1.4 Research Objectives 

 

 

The following objectives were identified as steps towards achieving the 

research aim: 

a) To determine the metal mass loss and corrosion growth pattern of 

mild steel coupon installed in an underground environment; 

b) To identify the empirical relationship between metal mass loss rate 

towards soil properties and soil chemical content through on-site 

evaluation and experimental works; 

c) To classify the parameters of soil chemical content and engineering 

properties according to the level of influence towards power law 

coefficient of k and v using AFAT approach; 

d) To verify the classification of soil parameters to power law coefficient 

of k and v using OFAT approach. 

 

 

 

 

1.5 Research Scopes 

 

 

A large part of this research are related to corrosion study involving extensive 

field and laboratory experimentation to examine the correlation between volume of 

metal loss and those parameters that are considered to influence metal loss such as 

pH, temperature, chloride content, sulphate content, sulphide content, moisture 

content, organic content and resistivity as well as soil physical properties such as 

plasticity index, clay content and soil particle size. Through this field and laboratory 

works, the empirical model of the external corrosion can be implemented based on 

the tested parameters. This model can be used to obtain the corrosion growth rate and 

can be used to assist pipeline operators in designing an effective Pipeline Integrity 

Assessment and Management (PIAM). The pipelines involved in this research are 

owned by Petronas Gas Berhad (PGB) and are laid all the way from Kerteh to 

Kangar. However this research will focus only on laid pipeline from Kerteh to 

Segamat due to time and allocation constraints. The steel coupons used to measure 

corrosion rates are prepared from actual segments of steel pipe of grade API 5L X70.  
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Statistical analysis and multi regression techniques were utilised to identify the 

relationship between soil physical and chemical properties towards dynamic 

corrosion growth in developing the prediction model. 

 

 

 

 

1.6 Importance of Research 

 

 

As an integrated part of pipeline reliability, external corrosion modelling in 

the buried gas pipeline has been receiving greater attention from both researchers and 

municipalities but modelling based on Malaysian soil conditions is not readily 

available. This research is significant for the following reasons: 

a) The proposed model can reduce the uncertainties in the estimation of 

corrosion growth by incorporating multi parameters related to soil 

chemical content and soil engineering properties. 

b) The proposed model would assist operators in making decisions on 

route selection for future pipeline construction and to forecast the 

corrosive tendency of a specific site. 

c) The proposed model can assist the operators in arranging the future 

inspection, repair and maintenance resources, thus reducing the 

operating and maintenance cost of underground pipelines. 

 

 

 

 

1.7 Contribution of the Research 

 

 

The research was meant to develop an empirical external corrosion growth 

rate model suitable for Malaysian soil conditions whereby historical corrosion data 

from site excavation on pipeline installation site is lacking. Moreover, the model can 

also be used to predict the corrosion loss while the pipeline is still in operation; 

therefore, it would assist the pipeline operator in designing maintenance programmes 

and to prioritize the locations for assessment and setting reassessment intervals or 

future pipeline construction. The research was conducted in right-of-way (ROW) of 

East Peninsular Malaysia at five different locations with legal permission from 
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Petronas Company. Other than ROW, the research was also conducted in UTM open 

areas in terms of empirical model development based on soil data from a particular 

area at ROW. For those who are not fortunate to have an enormous yet real data 

field, they can use data taken from the open area to develop a model as demonstrated 

by this research. 
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