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ABSTRACT  

Ultra-high network capacity becomes more desirable mostly fueled by the 

widespread adoption of wireless communication and 3G cellular mobile radio 

system. Narrow linewidth fiber laser has become an essential criterion to realize 

high-speed data transmission technology. Optical filters are used widely as 

narrowing element in fiber laser system. A design of Erbium-Doped Fiber Laser 

(EDFL) configuration is constructed by incorporating different optical filters. The 

EDFL using Ultra-Narrow Bandwidth tunable filter (UNB-Tunable Filter) shows 

potential to become an ideal system with the ability to have high Optical-Signal-to-

Noise-Ratio (OSNR), moderate output power and wide tunability. The Single 

Longitudinal Mode (SLM) and ultra-narrow linewidth was realized using Stimulated 

Brillouin Scattering (SBS) effect and 100 m highly nonlinear fiber. The proposed 

laser was operated in all-fiber ring configuration where the SBS effect takes place at 

the amplified output power of 26 dBm. Four Brillouin Stokes are produced spanning 

from 1550.17 nm to 1550.65 nm. Then, the amplified output was reduced to ~13 

dBm intentionally to produce only the first Stokes. The Fabry-Perot filter (F-P filter) 

was applied to suppress the Brillouin Pump (BP) output signal to generate SLM 

laser. By utilizing delayed self-heterodyne measurement technique, the linewidth of 

0.7 kHz was obtained which is the narrowest Brillouin linewidth reported so far. The 

application of narrow linewidth presented based on dual-wavelength fiber laser 

(DWFL). By implementing UNB-Tunable Filter and a Fiber Bragg Grating (FBG) 

within the EDFL ring configuration, the DWFL was successfully demonstrated. By 

varying the bandwidth of UNB-tunable filter from 50 pm to 650 pm, the DWFL 

spacing increased from 2 pm to 58 pm. The 2 pm DWFL found to be the narrowest 

spacing reported, which is really difficult to get due to mode competition faced by 

the cavity. The proposed design produced beat frequency spectrum of 0.25 GHz to 

7.27 GHz corresponding to the DWFL output spacing of 2 pm to 58 pm. The 

obtained frequency will find applications and significantly potential in sensing and 

wireless communication. 
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ABSTRAK 

Rangkaian berkapasiti tersangat tinggi menjadi lebih dikehendaki 

kebanyakannya didorong oleh penggunaan meluas komunikasi tanpa wayar dan 

sistem radio mudah alih selular 3 G. Laser gentian berkelebaran tirus telah menjadi 

satu kriteria yang penting untuk merealisasikan teknologi penghantaran data 

berkelajuan tinggi. Penuras optik digunakan secara meluas sebagai elemen penirusan 

dalam sistem laser gentian. Satu reka bentuk konfigurasi gentian laser terdop erbium 

(EDFL) dibina dengan menggabungkan penuras optik yang berbeza. EDFL dengan 

menggunakan penuras lebar jalur tersangat tirus boleh tala (UNB-penuras boleh tala) 

menunjukkan potensi untuk menjadi satu sistem yang ideal dengan keupayaan untuk 

mempunyai nisbah optik-isyarat-ke-hingar (OSNR) yang tinggi, kuasa output 

sederhana dan kebolehtalaan yang luas. Mod membujur tunggal (SLM) dan 

kelebaran tersangat tirus telah direalisasikan menggunakan kesan rangsangan 

penyerakan Brillouin (SBS) dan 100 m gentian ketaklinearan yang tinggi. Laser yang 

dicadangkan beroperasi dalam konfigurasi gelung berasaskan gentian di mana kesan 

SBS berlaku pada 26 dBm gandaan kuasa output. Empat Brillouin Stokes dihasilkan 

dari julat 1550.17 nm hingga 1550.65 nm. Kemudian, kuasa output yang digandakan 

telah dikurangkan kepada ~13 dBm bertujuan untuk menghasilkan hanya Stokes 

pertama. Penuras Fabry-Perot (penuras F-P) digunakan untuk mengurangkan isyarat 

output pam Brillouin (BP) bagi menjana laser SLM. Dengan menggunakan teknik 

pengukuran heterodyne kendiri tertunda, 0.7 kHz kelebaran telah diperolehi yang 

mana Brillouin berkelebaran paling tirus yang dilaporkan setakat ini. Aplikasi 

kelebaran tirus dikemukakan berdasarkan laser gentian dwi-panjang gelombang 

(DWFL). Dengan menggunakan penuras UNB-boleh tala dan gentian parutan Bragg 

(FBG) dalam konfigurasi gelung EDFL, DWFL telah berjaya ditunjukkan. Dengan 

mengubah UNB-penuras boleh tala dari 50 pm kepada 650 pm, jarak DWFL 

meningkat daripada 2 pm kepada 58 pm. 2 pm DWFL yang didapati adalah jarak 

tertirus pernah dilaporkan, yang mana sangat sukar untuk diperoleh akibat persaingan 

mod yang dihadapi oleh rongga. Reka bentuk yang dicadangkan menghasilkan 0.25 

GHz hingga 7.27 GHz frekuensi rentak bersepadanan dengan jarak output DWFL 

dari 2 pm hingga 58 pm. Frekuensi yang diperolehi boleh digunakan dalam aplikasi 

dan mempunyai potensi yang penting dalam penderiaan dan komunikasi tanpa 

wayar. 
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CHAPTER 1 

INTRODUCTON 

1.1 Background of Research 

 The invention of ‘light amplification by spontaneous emission of radiation’ or 

in short called laser in 1960 has triggered many development of fiber technology for 

communication system. Elias Snitzer issued theoretical description on single mode 

fibers (SMFs) whose core would be so small that it could carry light with only one 

mode of wave-guide. Later, he demonstrated an experiment of a laser passing 

through a thin glass of fiber, but the loss was too big for communication applications. 

The attenuation less than 20 dB/km [1] was achieved in 1970 through doping the 

fibers with low level of rare-earth elements and the attenuation is successfully 

reduced to less than 0.2 dB/km [2] owing to the rapid development in material 

fabrication. Late 1970s and early 1980s, fiber optics was used extensively for long 

distance of communication infrastructure. For long-distance applications, SMF at 

800 nm is the first commercial operating wavelength available. The operating 

wavelength is then extended to O-band region (1300 nm) where it is offered lower 

loss of 1 dB/km and minimum dispersion. At C-band region (1550 nm), the fiber loss 

found to have minimum loss of 0.2 dB/km [3].  

 In 1986, David Payne and Emmanuel Desurvire invented erbium-doped fiber 

amplifier (EDFA), improving the long-distance fiber systems by reducing the cost 



 

 

2 
 

since the used of optical-electrical-optical repeaters is eliminated due to EDFA 

naturally amplified at 1550 nm. 

 Today, various applications including military, medical, industrial and 

communication used fiber technology in their applications. Fiber laser nowadays 

becomes leading position in some application and starting to dominate the 

applications related to high power, pulsed oscillator and spectral manipulation. Even 

though fiber laser have been used for many applications, extensive effort on 

improving the quality of fiber laser signal are still progressing so that the wasted can 

be avoided. Common laser normally operates in multi-longitudinal modes due to 

large gain over 30 nm and small spacing between the longitudinal modes. Single 

longitudinal mode signal source which have narrow linewidth is highly preferable for 

many potential applications where coherence is necessary. The signal sources that 

possess narrow linewidth property is desirable for enabling ultra-high network 

capacity, corresponding to the narrower beam inside the waveguide. To meet the 

traffic demand of wireless communication system nowadays, the signal source that 

capable to support high capacity of data for one time is needed. However, to achieve 

narrow optical emission spectrum is a difficult task. Many methods have been 

introduced to achieve narrow linewidth operation of fiber lasers including fiber Fox-

Smith resonators [4], intracavity wave-mixing in a saturable absorber  [5], 

unidirectional ring resonator [6], and injection locking [7]. Nevertheless, no methods 

are free from operating difficulties from environmental problems such as nonlinear 

effect, mode competition and homogeneous line broadening. Therefore, 

improvement and modification in term of design and the use of suitable devices is 

proposed and demonstrated to yields narrow linewidth fiber laser. Also, the nonlinear 

phenomena are explored to opened new ways in the generation of narrow linewidth 

laser source. The potential of narrow linewidth fiber laser is well-known in 

communication. However, the idea to create carrier waves with narrow linewidth 

from each structure to obtain the wireless communication signal is still lack from 

many aspects.  
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1.2 Problem Statement 

 Fiber laser possess varsities of parameters and operating parameters that are 

attractive solution for certain application. Among the features possessed by fiber 

laser, the narrow linewidth sources have become strong interest in which single 

frequency laser become acceptance form of laser and commercially available in 

diverse application. In spite of that, there is minimal study on fiber laser system 

concerning optical filters implementation effect toward fiber laser signal source. 

Since the production of narrow linewidth laser source depends on optical filters that 

are use, hence a design of the cavity using different optical filters is form. The fiber 

laser sources performance that are produce is investigate. On the other hand, fiber 

laser is well known to produce multi-longitudinal mode with mode hopping due to 

the long cavity and narrow spacing of longitudinal mode. This problem may be 

overcome by construct a short cavity, however this design has the disadvantages in 

term of low efficiency and weak stability. Thus, a design using Stimulated Brillouin 

Scattering (SBS) effect are proposed and demonstrated with simple cavity structure 

that able to achieve ultra-narrow transmission band. Despite of generation of narrow 

linewidth fiber laser source, their usefulness and potential to work for wavelength 

conversion application to fulfill the communication demand is also determine. Thus, 

narrow linewidth dual-wavelength fiber lasers (DWFLs) becomes an alternative way 

to realize the wireless communication generation. However, a lot of efforts require to 

produce DWFLs that exhibit high spectral purity due to mode-competition and strong 

homogeneous line broadening.   

1.3 Objectives of Research 

The aim of the research presented in this thesis has been focused on improving the 

weakness faced by the current design in the optical communication systems. The 

objectives of the research are:  
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i. Designing and characterizing optical filters for erbium-doped fiber laser 

(EDFL) in improving and upgrading the fiber laser systems performance in 

term of compactness, output powers, tunability and primarily as an alternative 

to the narrowing element of the systems.  

ii. Generating single longitudinal mode and narrow linewidth laser source. A 

novel approach of using stimulated Brillouin scattering effect (SBS) has been 

designed and reported.  

iii. Determine dual-wavelength narrow linewidth fiber laser to realize the 

wireless communication band by beating the dual-wavelength signal. 

Different from other approaches, dual-wavelength laser generation has the 

advantage of simple setup configuration as well as low cost and power 

consumption. 

1.4 Scope of Research 

 This research covered the experimental works on generating the narrow 

linewidth fiber laser. Firstly, the basic configuration of fiber laser is study and 

demonstrate. Then the comparative study on the systems performance is execute by 

insertion of narrowing wavelength elements within the cavity. The elements consists 

of tunable bandpass filter, arrayed waveguide grating and ultra-narrow bandwidth 

tunable filter. Erbium-doped fiber amplifier (EDFA) is used as predominant gain 

medium throughout these studies.  Prior to that, the working principle of each 

wavelength selective mechanism is reviewed. The aspect of laser performance such 

as tunability, efficiency, optical-signal-to-noise ratio (OSNR) and the linewidth of 

lasing outputs were investigated. Subsequently, a technique is developed from the 

wavelength selective elements characterization in which a SLM narrow linewidth 

design of fiber laser demonstrated by incorporated UNB-tunable filter. Brillouin fiber 

lasers (BFLs) have been subjected of considerable research for many applications 

due to their extremely narrow linewidth. Thus, supported by availability of 

equipment in laboratory, focus was given to the generation of SBS in SMFs and also 
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in dispersion compensating fibers (DCFs). The generation of multiwavelength 

Brillouin fiber laser is also studied. Comparative observation was made by using 

different optical spectrum analyzer (OSA) resolution. This is followed by the 

experimental technique to generate BFL. A novel configuration is proposed and 

demonstrated to generate ultra-narrow linewidth SLM based on BFL and using 

highly nonlinear fiber as gain medium. Finally, an approach is realized for radio 

frequency generation by operating experimental studies on narrow-linewidth dual-

wavelength fiber laser.  

1.5 Significance of Research 

 The fiber lasers has been widely and actively studied for its concept, designs, 

various physics phenomena operation. Thus, the results obtained from this study are 

important as a reference source for the later experiment implementation. 

Comprehensive study has been made to determine and suggest the best method for 

realizing the narrow linewidth fiber laser to meet not only today but also for future 

need. The technique that uses SBS effect to generate ultra-narrow linewidth signal 

that presented here also can be considered to be used towards communication 

industry and there are still room to be improvised for better and effective approach in 

particular applications. Moreover, new application of wireless communication can be 

provided by the design of narrow DWFLs that are proposed here. 

1.6 Thesis Methodology 

Prior to the experimental works start, literature reviews as well as the 

understanding of the operating principle of the fiber lasers and SBS effect are require 

to be sort out in the first place. Subsequently, reviews on narrow linewidth 
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characteristic and operation is study and investigate. Upon completion of the review, 

the characterization of basic configuration of fiber laser is being done. The used of 

optical filter is most common method to producing narrow linewidth laser source. 

Thus, the experiment on fiber laser with vibration wavelength controlled by different 

optical filter is executed and the results are compared. The filter that offer promising 

output characteristic is determine and be applied for generation of narrow linewidth 

fiber laser. To extend the capability of fiber laser design, a design of narrow 

linewidth fiber laser assisted by the SBS effect is proposed and demonstrated. 

Finally, after desirable property of narrow linewidth has been produced, their 

potential to works in wireless communication applications is determined by beating 

narrow linewidth DWFLs output. 

1.7 Thesis Arrangement 

 There are six chapters in this thesis. Chapter 1 covered the introductory 

description of this research which comprised of brief history and background of the 

fiber laser and its relation with the requirement of the related applications. The 

problem statement, objectives, scope and significance of this research are also 

included in this chapter.  

Chapter 2 is a review on experimental works involving fiber lasers, including 

the atomic rate equation of erbium doped fiber (EDF) as the gain medium, different 

broadening effect inside the cavity and also principle of the fiber laser. This chapter 

also briefly covers literature review pertaining the methods and measurement of the 

narrow linewidth fiber lasers.  

 Chapter 3 demonstrate the basic configurations of fiber laser. In addition, the 

fiber laser setup by incorporating different wavelength selection elements also 
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examined. These devices are efficient to be apply as narrowing elements of the 

signal. Prior to that, the working principle of wavelength selective mechanisms were 

reviewed and discussed in this chapter to determine the usefulness for practical 

applications. The aspects that we investigated include the tunability, the OSNR, 

efficiency and linewidth of lasing output produced. 

 Chapter 4 represents few designs of single and multiwavelength narrow 

linewidth fiber lasers. For single narrow linewidth fiber laser, two cavity designs are 

proposed. A design involved the use of UNB-tunable filter and fiber Bragg grating 

(FBG) within the ring cavity and EDF as the gain media, while the other design 

involved the use of high pump power and the highly nonlinear fiber (HNLF) as the 

nonlinear medium to generate the SBS effects. The architectures are considered to be 

a novelty by virtue the new element use and the impressive obtained result. On the 

other hand, the use of high resolution optical spectrum analyzer (OSAs) improved 

the recorded observations and analysis. Moreover, for the multiwavelength narrow 

linewidth fiber laser, a design was proposed and demonstrated by incorporating SBS 

effects together with UNB-optical filter. From the design, the single Stokes with high 

OSNR and narrow linewidth is extracted from the output.  

In chapter 5, the research work on applications of narrow linewidth fiber laser 

are explained and presented. Tunable narrow linewidth DWFLs that are proposed 

considered to be novel due to new design and capabilities to be tune. Since there has 

been significant interest in wireless communication, DWFLs is present to be 

operated using the beating technique to serve its purpose. 

 The final chapter lists the conclusion of the research finding that answered 

the research’s objectives. Recommendations for the future work in the field are also 

discussed as the extension of the works done in this research. 
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