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ABSTRACT 

 

 

 

 

 Oil spill occurs almost every day. Department of chemistry Malaysia (JKM) 

took almost a week or more days to analyze it. Therefore alternative technique 

should be considered. In this work, a new technique is introduced by using laser 

technology and piezoelectric transducer. The system is known as Laser Induced 

Acoustic (LIA). Lube oil was used as a hydrocarbon sample. Distilled water and 

hydrochloric acid were employed for solution preparation with different 

concentrations in the range of 0 - 1000 ppm. Hydrocarbon became impurities in the 

solution, which can be observed via CCD video camera after illumination by diode 

pumped solid-state laser (DPSS). Refractive index of hydrocarbon solution was 

measured by He-Ne laser following Snell‘s law. A Q-switched Nd:YAG laser was 

focused to induce optical breakdown and shock wave generation. This phenomenon 

was recorded via high-speed photography system. Dye laser pumped by nitrogen 

laser was employed as a source of flashlight. Digital delay generator was deployed to 

synchronize both lasers. CDD camera was interfaced with personnel computer with 

Matrox version 9 software, which was used to record shock wave. Silicone 

photodiodes were employed to detect both lasers. Optical delay between two lights 

represented the frozen time of shock wave generation. The time delay was 

manifested via digital oscilloscope. Shock wave propagation in hydrocarbon solution 

was also detected via piezoelectric transducer. The sound signal was also displayed 

on the same oscilloscope. The sound amplitude (volt) was calibrated via hydrometer 

to estimate shock wave pressure (atm). Shadowgraph image of shock wave was 

analyzed via ImageJ software. Shock wave radius was measured and divided by 

optical delay to determine sound speed in hydrocarbon solution at different 

concentration. Observation result showed that sound speed linearly increases with 

hydrocarbon concentrations. Similarly sound amplitude was found linearly 

increasing with hydrocarbon concentrations. This is due to a lot of mass transfer 

which gives rise to high impact to the transducer. Combination of high-speed 

photography and transducer detection validate the shock wave as the mechanism to 

determine the hydrocarbon concentration. Hence sound speed is the fingerprint for 

every hydrocarbon solution. Furthermore sound speed has linear relationship with 

hydrocarbon concentration. Similarly the sound amplitude has linear relationship 

with hydrocarbon concentration. This similarity indicates that the hydrocarbon 

concentration can be detected based on sound generation via laser induced acoustic 

technique.
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ABSTRAK 

 

 

 

  

Tumpahan minyak berlaku hampir setiap hari. Jabatan Kimia Malaysia 

(JKM) mengambil masa hampir seminggu atau lebih untuk menganalisisnya. Oleh 

itu, teknik alternatif perlu dipertimbangkan. Satu teknik baru diperkenalkan dengan 

menggunakan teknologi laser dan transduser piezoelektrik. Sistem ini dikenali 

sebagai akustik beraruh laser (LIA). Minyak pelincir telah digunakan sebagai sampel 

hidrokarbon. Air suling dan asid hidroklorik digunakan untuk menyediakan larutan 

dengan kepekatan dalam julat  0  ke 1000 ppm. Hidrokarbon menjadi benda-asing 

dalam larutan dan dapat diperhatikan melalui kamera video CCD yang disinari 

dengan laser keadaan pepejal berpamkan diod. Indeks biasan larutan hidrokarbon 

diukur dengan menggunakan Laser He-Ne dan mengikut hukum Snell. Laser 

Nd:YAG bersuis-Q difokuskan untuk membentuk runtuhan optik dan menjana 

rambatan gelombang kejutan. Fenomena ini dirakamkan dengan sistem fotografi 

kelajuan tinggi. Laser pencelup yang dipam oleh laser nitrogen digunakan sebagai 

lampu kilat. Penjana tundaan masa digital digunakan untuk menyerentakan kedua-

dua laser tersebut.  Kamera video CCD yang dihubungkan dengan komputer peribadi 

melalui perisian MATROX versi 9 telah digunakan untuk merakamkan gelombang 

kejutan. Fotodiode silikon digunakan untuk mengesan kedua-dua laser.  Tundaan 

masa optik antara kedua-dua cahaya ini mewakili masa pembekuan rambatan 

gelombang kejutan.  Masa tundaan ini dipaparkan pada osiloskop digital. Gelombang 

kejutan dalam larutan hidrokarbon juga dikesan melalui transduser piezoelektrik. 

Isyarat bunyi ini dipaparkan dalam osiloskop digital yang sama. Amplitud bunyi 

(volt) telah dikalibrasi menggunakan hidrometer untuk menganggarkan tekanan 

gelombang kejutan (atm). Imej geraf bayangan gelombang kejutan dianalisis 

menggunakan perisian ImageJ. Jejari gelombang kejutan diukur dan dibahagikan 

dengan masa tundaan optik untuk menentukan halaju bunyi dalam larutan 

hidrokarbon pada kepekatan yang berbeza. Hasil pemerhatian menunjukkan halaju 

bunyi bertambah dengan kepekatan hidrokarban. Begitu juga amplitud bunyi 

bertambah dengan kepekatan hidrokarbon. Ini disebabkan oleh pemindahan jisim 

yang banyak memberi impak yang tinggi pada transduser. Gabungan sistem fotografi 

kelajuan tinggi dan pengesanan transduser mengesahkan bahawa gelombang kejutan 

adalah mekanisma penentu kepekatan hidrokarbon. Oleh itu halaju  bunyi menjadi 

cap jari bagi setiap larutan hidrokarbon. Tambahan pula halaju bunyi mempunyai 

hubungan linear dengan kepekatan hidrokarbon. Begitu juga amplitud bunyi 

mempunyai hubungan linear dengan kepekatan hidrokarbon. Penyamaan ini 

menunjukkan bahawa kepekatan hidrokarbon boleh dikesan berdasarkan bunyi yang 

dijanakan melalui teknik akustik aruhan laser (LIA). 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

Oil poses a range of environmental risks and causes wide public concern 

when released into the environment, whether as catastrophic spills or chronic 

discharges [1]. An oil spill is the release of liquid petroleum hydrocarbon into the 

environment, especially marine areas, due to human activity, and is a form of 

pollution. Oil spills may be due to releases of crude oil from tankers, offshore 

platforms, drilling rigs and wells, as well as spills of refined petroleum products 

(such as gasoline and diesel) and their by-products, heavier fuels used by large ships 

such as bunker fuel, or the spillage of any oil refuse or waste oil [2]. Cleanup and 

recovery from an oil spill is difficult and depends upon many factors, including the 

type of oil spilled, the temperature of the water (affecting evaporation and 

biodegradation), and the types of shorelines and beaches involved. Spills may take 

weeks, months or even years to clean up. Therefore, to unambiguously characterize, 

identify, categorize, and quantify all sources of hydrocarbons entering the 

environment is important. It is crucial for the environmental damage assessment; the 

evaluations of the relative risks to the ecosystem posed by each spill, and for 

selecting the appropriate spill response and taking effective cleanup measures. 

The usual method uses the liquid–liquid separation technique to determine 

quantitatively the amount of oil dispersed at sea [3-7]; However the separation 



2 

 

 

technique has certain constraints, including being time consuming, only being 

performed in a laboratory, and using hazardous chemicals such as N-hexane and 

Freon, which are carcinogens. The recent Fourier transform technique too has the 

same constraints [8]. That is why scientists seek a fast and easy in situ technique to 

determine amounts of oil spilled at sea. The high power laser is one of the best 

candidates to be used to solve this problem. A Q-switched laser is able to induce an 

acoustic shock wave, which has high potential for transient detection techniques. 

Nanosecond- pulsed breakdown in a liquid phase has wide application in many other 

fields [9-14].  

 

 

The Laser-Induced Acoustic (LIA) is a very sensitive technique to apply for a 

wide range of applications. Laser Induced Acoustic is part of a family of optothermal 

techniques (OT), which are based on the conversion of optical into mechanical 

energy. Especially for the solid and liquid media, the generating and detecting of 

acoustic waves accrued using a short pulse laser-based technique. This technique 

was demonstrated as an important tool and used for many applications such as in the 

medical areas and applied sciences. Furthermore, this technique can be used for 

material characterization [15, 16], surface cleaning from the contaminations [17], 

laser tissue ablation, corneal sculpting [18] and indirect gall stone fragmentation 

[19]. The rapid heating, thermoelastic expansion, and phase change occur during the 

interaction between the laser and surface of solid media, while the interaction 

between the laser and liquid media, emission of a strong ultrasonic or shock wave 

would occur [20, 21]. 
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1.2 Problem Statement  

 

 

Pollution and its control are very important and effecting issues on human 

life. One of the crucial materials to be controlled from being polluted in human life is 

water. Thus one of the factors among many pollutant factors is hydrocarbon in water. 

 

 

In Jabatan Kimia Malaysia (JKM), at Bahagian Alam Sekitar, a large number 

of samples from various organization either government or private sectors received 

daily for analysis. JKM provides the chemical analysis services (Appendix A) from 

liquid to solid form in different conditions. The analysis is divided in two parts; 

control analysis and enforcement analysis.  

 

 

For the controlling part, they analyze the specific parameters in order to 

confirm that the samples are obliging with acts and regulations as stated in Act 127 

―Environmental Quality Acts and Regulations‖. They perform this analysis monthly 

for the monitoring purposes. While for the enforcement analysis, the samples 

undergo specific tests in order to determine specific parameters depending on the 

needs. The samples can be sewage, discharged water from factory, and fire debris. 

The samples of seawater received by JKM, is to determine the level of Hydrocarbon. 

The chemical techniques known as liquid-liquid Partition-Gravimetric (LLPG) 

techniques, Gas Chromatography Mass Spectrometer (GCMS), and Fourier 

Transform Infrared Spectrometry (FTIR) are used. 

 

 

In LLPG technique, liquid samples such as seawater and river water undergo 

the digestions process. Usually, the purpose of this technique is to separate the 

hydrocarbons from water. The digestion process takes approximately 24-36 hours. 

Finally, the concentration can be measured by using mass technique as follow: 

 

                                                               (1.1) 

 

In this technique, the used solvent such as, carbon tetrachloride (CCl4), and 
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chlorofluorocarbon (CFC) are harmful to the environment according to the well-

documented ozone layer depletion. Then, the GCMS is used to determine the type of 

hydrocarbons by separating the chemical bonding in accordance to the mass 

percentage; however, GCMS requires the sample in gas form. Then, the technique 

namely, FTIR spectrometer is being used to determine the type of sample either 

water or oil. The disadvantages of the aforementioned technique in addition to the 

harmfully for the environment; it is also a time consuming technique and labor 

intensive. Therefore, other alternative technique needs to be considered to reduce the 

processing time as well as the chemical application.  Therefore LIA was proposed in 

order to reduce the limitations of chemical method. 

 

 

 

 

1.3 Research Objectives 

 

 

This main objective of this research is to develop a new method namely Laser 

Induced Acoustic (LIA) technique to determine the hydrocarbon level in water.   In 

attempts to achieve this goal the following tasks are established: 

 

1. To observe and characterize the shock wave properties in different 

hydrocarbon concentration 

2. To detect the acoustic signal in different hydrocarbon concentration  

3. To correlate between the acoustic properties and the concentration of 

the hydrocarbon. 
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1.4 Scope of the study 

 

 

In this study, Lube oil was used as hydrocarbon sample. Distilled water was 

used as solution instead of seawater, because hydrocarbon is assumed to be as 

contamination in water. The hydrocarbon concentration was studied in the range of 

0-1000 ppm.  A Q-switched Nd:YAG laser was deployed to induce optical 

breakdown associated with  acoustic shock wave generation.  Dye laser pumped by 

nitrogen laser was used as a flash of light to illuminate the shock wave propagation. 

A digital delay generator was used as a synchronizer unit. High-speed photography 

technique was used to grab high-speed phenomena. CCD video camera was used to 

record the acoustic shock wave via Matrox version 9 software. He-Ne laser was used 

to measure refractive index following the Snell‘s law.  Diode pumped solid-state 

laser (DPSS) were utilized to characterize the hydrocarbon solution properties.  

Piezoelectric transducer was employed to detect the present of acoustic signal. 

Digital oscilloscope was used to display the acoustic signal as well as the optical 

delay.  Hydrometer was used to calibrate the transducer. 

 

 

 

 

1.5 Significant of the study 

 

 

A new technique that is laser induced acoustic shock wave was introduced to 

detect the level of hydrocarbon in water.  The level of hydrocarbon is expected to be 

determined based on the knowledge either the speed of sound of the pressure of the 

acoustic signal. The proposed technique has a potential to be used for detecting the 

hydrocarbon level in water based on a green technology.  It is faster, clean and 

environmentally friendly.  
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1.6 Thesis outline 

 

 

This thesis is consisting of five chapters. Chapter 1 provides an overview on 

the hydrocarbon detection using current conventional methods such as physical and 

chemical methods and the necessity of new method for hydrocarbon detection in 

water. The research problem statement, objectives, scope and significance of this 

study are described in this chapter. The literature review of previous research of oil 

detection and techniques of detections are described in details in Chapter 2. This 

chapter tries to highlight a relationship between the hydrocarbon detection and laser 

induced acoustic. Chapter 3 presents in detail the methodology of sample 

preparation, system characterizations, calibration and data analysis. The method used 

for signal detection, high-speed photography system is explained in this chapter. 

Chapter 4 shows the results and discussions. This is also includes the shockwave 

captured by high-speed photography system and acoustic signal detection, 

hydrocarbon impurities in water and optical properties of media. Chapter 5 

concludes the significant findings and further recommendations on this diversified 

research possibility. The limitations related with our investigation are highlighted.  
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