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ABSTRACT 

 

 

 

 

Optical bistability is one of the nonlinear properties that produce an essential 

light control which contributes in various photonics applications such as all-optical 

switching and optical memory. In this thesis, bistability behavior of optical signals 

generated in microring resonator (MRR) systems using bright soliton input pulses 

with 1.55 μm wavelength is studied. The generation of the bistable signals is 

mathematically analyzed through the transfer matrix analysis and simulated by the 

MATLAB software version 2014a. The behavior of the propagated input pulses in 

terms of intensity and phase shift is investigated for different configurations 

including All-pass MRR, Add-drop MRR and PANDA MRR systems. Three novel 

Mobius MRR configurations consist of All-pass Mobius MRR, Add-drop Mobius 

MRR and PANDA Mobius MRR configurations are proposed and the light treatment 

through Mobius MRR systems is analytically studied and compared with 

conventional MRR systems. For determining the effect of physical parameters such 

as ring radius, control power variation and coupling coefficients on the output pulse, 

the optical hysteresis loops of bistable signals are generated via silicon-on-insulator 

nonlinear MRR configurations. The analyses of the results are conducted by 

calculating the output switching power, input threshold power and hysteresis width 

of bistable loop for radius variation from 1 μm to 6 μm with an increment of 1 μm, 

change of coupling coefficient from 0.4 to 0.9 with increment of 0.1 and variation of 

controlled power from 50 mW to 100 mW with increment of 10 mW. It is found that 

small coupling coefficients enhance the hysteresis width and output switching power 

of optical bistable loops. The value of output switching power obtained at the output 

port of Add-drop Mobius MRR is 30.26 mW which is higher than those obtained 

from All-pass Mobius and PANDA Mobius MRR configurations. The threshold 

powers of the All-pass Mobius, Add-drop Mobius and PANDA Mobius 

configurations for on switching operations are obtained as 20.59 mW, 31.39 mW and 

25.19 mW respectively. It is found that, optimization of the Mobius MRR system 

can be conducted by increasing the external radius of Mobius ring waveguide and 

decreasing the coupling coefficient with implementation of the high control power. 

In this work, the Mobius configurations are introduced as a convenient compact 

design to generate optical bistability in comparison with conventional configurations 

of nonlinear MRR system.  
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ABSTRAK 

 

 

 

 

Optik dwikestabilan adalah salah satu daripada sifat-sifat tak linear yang 

menghasilkan kawalan cahaya penting yang menyumbang dalam pelbagai kegunaan 

fotonik seperti semua-pensuisan optik dan memori optik. Dalam tesis ini, tingkah 

laku dwikestabilan isyarat optik yang dihasilkan dalam sistem pengalun cincin mikro 

(MRR) menggunakan denyut input soliton cerah dengan panjang gelombang 1.55 

μm telah dikaji. Penjanaan isyarat dwistabil dianalisis secara matematik melalui 

analisis matriks pindahan dan disimulasikan dengan perisian MATLAB versi 2014a. 

Kelakuan denyut input rambatan dikaji dari segi keamatan dan anjakan fasa untuk 

susunan yang berbeza termasuk sistem MRR lepasan-semua, MRR penambah-jatuh 

dan MRR PANDA. Tiga susunan MRR Mobius baru terdiri daripada susunan MRR 

Mobius lepasan-semua, MRR Mobius penambah-jatuh dan MRR Mobius PANDA 

dicadangkan dan rawatan cahaya melalui sistem MRR Mobius dikaji secara analitik 

dan dibandingkan dengan sistem MRR konvensional. Untuk menentukan kesan 

parameter fizikal seperti perubahan jejari cincin, kuasa kawalan dan pekali 

gandingan denyut output, gelung histerisis optik isyarat dwistabil telah dihasilkan 

melalui susunan MRR tak linear silikon-atas-penebat. Analisis keputusan dilakukan 

dengan pengiraan kuasa pesuisan output, kuasa ambang input dan lebar gelung 

histerisis dwistabil untuk perubahan jejari daripada 1 μm hingga 6 μm dengan 

kenaikan 1 μm, perubahan pekali gandingan daripada 0.4 kepada 0.9 dengan 

kenaikan 0.1 dan perubahan kuasa kawalan daripada 50 mW kepada 100 mW 

dengan kenaikan 10 mW. Ia didapati bahawa pekali gandingan kecil meningkatkan 

lebar histerisis dan kuasa pensuisan output gelung optik dwistabil. Nilai kuasa 

pensuisan output diperolehi di port output MRR Mobius penambah-jatuh ialah 30.26 

mW yang mana lebih tinggi daripada susunan MRR Mobius lepasan-semua dan 

MRR Mobius PANDA. Kuasa ambang susunan Mobius lepasan-semua, Mobius 

penambah-jatuh dan Mobius PANDA untuk operasi pensuisan terpasang diperoleh 

masing-masing sebagai 20.59 mW, 31.39 mW dan 25.19 mW. Ia didapati bahawa, 

pengoptimuman sistem Mobius MRR boleh dilakukan dengan meningkatkan jejari 

luar pemandu-gelombang cincin Mobius, dan mengurangkan pekali gandingan 

dengan pelaksanaan kuasa kawalan yang tinggi. Dalam kerja ini, susunan Mobius 

diperkenalkan sebagai reka bentuk padat yang mudah untuk menjana dwikestabilan  

optik berbanding dengan susunan konvensional pada sistem MRR tak linear. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Optical bistability is one of the nonlinear properties which has contributed in 

various applications such as optical transistors [1, 2], optical logic switching [3, 4], 

optical signal processing [5], fiber communication [6-8] and optical memories [7, 9, 

10]. Optical bistability is a hysteresis effect that illustrates two possible output power 

states within an input power range in a nonlinear optic system. The generation of 

optical bistability utilized for producing the change of the refractive index of the 

material with the effect of the input signal [11]. In common, the refractive index can 

be controlled by manipulating three types of nonlinear effects that occur within the 

nonlinear resonator cavity which are thermo-optics [12], optical Kerr [13] and carrier 

induced plasma [14, 15]. The optical Kerr effect is found as the main factor of the 

optical bistability generation. It enhances by the nonlinear response of the propagated 

light signal within the optical resonator cavity and with minimum loss of induced 

light signal [16]. Thus, several experiments and theoretical investigation have been 

conducted based on the nonlinear Kerr effect for optical switching [17] and optical 

memory devices [18]. The development of the optical bistability in numerous 

applications has encourage researchers to explore the nonlinear properties with 

experimental findings on the various cavities of optical system such as microring 

waveguide[19], photonics crystal cavities [20, 21], metal gap nanocavities[22], 

subwavelengths metallic grating [23], and amorphous silicon nanoanntena [24]. The 

optical resonance effect is found as a key parameter which provided the increase of 

the 
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optical bistability in which have been investigated in theoretical by using Fabry Perot 

(FP) configuration in analytical modelling [25]. Besides, the analytical formulation 

has been developed in optical nanophotonics system for investigating the optical 

bistability within a nonlinear metal nano-anntena in which able to generate strong 

field and increase the refractive index changes [25]. The microring resonator (MRR) 

is one of the promising components in photonics integrated circuit that has potential 

capability in enhancement of nonlinearity which have been proved in experimental 

and theoretical investigation that suit with versatile applications including generation 

of optical bistability [10, 26, 27]. The optical MRR waveguide has been a noteworthy 

structure that provide nonlinearity in low power consumption due to resonance and 

confinement of light within the cavity. This allows the MRR to be used for the 

generation of the optical bistability that can be achieved in low cost and compact size 

[10, 28]. The design of the MRR configuration is an important factor that can affect 

the generation and the enhancement of the optical bistability [29]. In year 2008, 

Yupapin et al. has introduced PANDA configuration of MRR system to provide 

optical switching operation based on the optical bistability effect [30]. The Mobius 

shape of ring resonator waveguide have been implemented in electrical resonator 

circuit and optical waveguide resonator [31] for several application such as band-

pass filter [32], transmission zero and tunable oscillator [33].  

 

 

However, in the review of this study, there are still no report on the 

investigation of the optical bistability based on the optical Mobius ring waveguide 

whether in theoretical or experimental study.  Thus, the theoretical investigation is 

needed to understand the evolution and enhance the performance of optical 

bistability in Mobius configuration of MRR system.  

 

 

 

 

1.2 Problem Statement 

 

 

Optical bistability is an important optical nonlinear property which has many 

application in all-optical switching devices. The generation of optical bistability 

behavior is mostly intuitive nonlinearity effect which can be enhanced using the 

MRR waveguide system. The optical MRR have provided great advancement in the 
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research of the optical science field with numerous application such as the all-optical 

switching, memory, storage and communication. In recent years, the fabrication of 

the optical MRR system is focused to demonstrate the fast bistable switching and 

optical chaotic signal with low input power and the compact size of configurations. 

Consequently, theoretical and experiment investigations are needed for analyzing the 

MRR circuits which can contribute to generate and optimize the bistable optical 

signal. The modelling and simulating of the light propagation within the MRR 

system are performed with the mathematical derivation of the optical transfer 

function based on the transfer matrix method and coupled mode theory to study the 

behavior the optical bistability signal on the proposed configurations. The parameters 

of the MRR medium such as coupling coefficient, radius of the microring and control 

power signal are necessary to be investigated for producing a fine nonlinear response 

to generate an optimized optical bistability hysteresis loop for all-optical switching 

applications. A clear understanding of fundamental physics optics can be utilized by 

analyzing the obtained results which governed several subtopic of the photonics 

fields such as nonlinear effect, optical bistability, scattering matrix, and coupled 

theory. 

 

 

 

 

1.3 Research Objectives 

 

 

The general objectives of this research is to study the formation of the optical 

bistability, using bright soliton pulse within the ring resonator system based on the 

analytical treatment of the waveguide system. 

 

The specific objectives of this research: 

 

 To design Mobius type of MRR system based on All-pass, Add-drop 

and PANDA microring resonator configurations. 

 To develop the mathematical formulation for deriving the optical 

transfer function based on conventional and Mobius types MRR 

configurations. 
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 To simulate the pulse propagation within MRR systems by using 

iterative method for modelling the output pulse spectrum and 

analyzing the output to input power of the MRR configurations. 

 To optimize the physical properties of MRR system for enhancing the 

generation of optical bistability. 

 To demonstrate the switching operation based on the spectrum of 

output signal of MRR configurations. 

 

 

 

 

1.4 Research Scope  

 

 

This research emphasis on the design of new MRR for generating of optical 

bistability. The Mobius ring waveguide is implemented into the All-pass, Add-drop 

and PANDA configuration of MRR. The topological effect of Mobius type 

configuration is studied in detail in which the ring structure having two different 

radius per roundtrip. The MRR configuration is simulated based on the physical 

parameter of Silicon-on-Insulator (SOI) waveguide which consists of the silicon as 

core and silica as the cladding material. The SOI waveguide fabricated has a linear 

refractive index of 2.50 [34] and nonlinear refractive index of 4.8×10-18 m2/W [35]. 

The MRR configurations is simulated by considering the lateral coupling between 

the main ring and bus waveguide. The derivation of optical transfer function equation 

is performed based on the coupled mode theory and transfer matrix method. The 

pulse propagation equations describing the output and circulating electric fields 

within the MRR systems are obtained by an analytical formulation of the incident 

optical bright soliton pulses which are fed into the input port of MRR configurations. 

The simulation of optical electric fields are based on the iterative method of the 

propagation equation for 200000 roundtrips in order to achieve the optical bistability 

on the output-to-input power. The parameterization of the waveguide properties is 

executed by varying the coupling coefficients from 0.4 to 0.9, the ring radius from 1 

μm to 6 μm for All-pass and Add-drop types, and 6 to 11 μm PANDA type 

configuration, and control powers from 50 mW to 100 mW. The input power of the 

bright soliton is fixed as 50 mW when operating the microring system. The 

dynamical variation of the optical bistability hysteresis loop is investigated based on 
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the dispersive nonlinear element which relates the change of nonlinear index of the 

cavity. Several practical parameters such as propagation losses, effective core area, 

medium index, and attenuation constant are balanced for enhancing the nonlinearity 

of the waveguide. This will enhances the high performance of optical bistability 

effect. MATLAB software version 2014a is used to model and simulate the optical 

spectrum and the hysteresis loop of the optical bistability within MRR configurations. 

 

 

 

 

1.5 Research Significance  

 

 

The optical bistability is based on the dispersive process. It is found to be 

important study of nonlinear properties due to its capability of providing the optical 

switching operation in low power. The contribution of this study is mainly focused 

on providing the fundamental physics of the optical bistability generation by 

applying the optical bright soliton pulses that leads to a clear understanding the 

propagation of the bright soliton pulse within the perspective of nonlinearity theory. 

There are six configurations of MRRs have been studied to prefigure precisely the 

performance of optical bistability hysteresis loop for switching operation. The 

development of theoretical derivation on conventional and proposed Mobius ring 

waveguide is utilized based on transfer matrix method. These present the basic 

knowledge on the analytical derivation for optical propagation pulse within a 

resonator medium. The correlation of the mathematical formulation with nonlinear 

optics physics have been described based on the modelling of the integrated 

resonator devices for the enhancement of all-optical switching operation for the 

information storage, optical transistor and communication applications. 

 

 

 

 

1.6 Thesis Outline 

 

 

This thesis is divided into six chapters. Chapter 2 will describe the historical 

and scientific review of optical bistability. In the third chapter, the essential physic 

concepts nonlinear optics for the formation of temporal optical soliton are discussed. 
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The waveguide theory has been explained by introducing the optical coupled-mode 

theory and the transfer matrix analysis for optical field propagation in the medium 

which correlates MRR, and optical bistability. The mathematical derivation of the 

optical transmission powers based on propagation equations are examined using 

transfer matrix analysis and described in detail in Chapter 4. The modelling of the 

MRR systems are discussed based on the mathematical iterative method which are 

used for the coding and programming aspect part. There are six configuration of 

MRR system that are investigated which comprises of three conventional 

configurations and three Mobius configurations. In Chapter five, the optical pulse 

propagation within MRR configurations are analyzed and discussed based on 

numerical modelling using the scattering matrix iterative technique. The linear and 

nonlinear effects are considered in the numerical models for six configurations of 

MRR waveguide. The bright soliton pulse with different powers are used for the 

nonlinear MRR waveguide which provides the chaotics optical signal. The resonance 

mode of the MRR systems generated the amplified output signal and enhanced the 

generation of the optical bistability of the system. In Chapter six, concludes the study 

on optical bistability in Mobius MRR. 
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