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ABSTRACT 

 

 

 

 

 This research focuses on tsunami wave modelling.  The nature of tsunami 

waves can be conditionally divided into three parts; generation, propagation and 

inundation (or run-up).  General patterns and important characteristics of tsunamis can 

be predicted by various sets of governing equations and commonly used models which 

include elastic wave, nonlinear shallow water and forced Korteweg de Vries (fKdV) 

equations.  In order to construct tsunami model, we divide this modelling into two 

parts; the first part contains seismic (earthquake) wave that focuses on the nonlinear 

elastic wave equation.  The equation has been successfully applied to the tsunami 

generation part and is shown to give suitable complex flow simulation of elastic wave 

generation.  The second part essentially deals with the nonlinear shallow water 

equations which are often used to model tsunami propagation and sometimes even the 

run-up part.  This work specifically studies the properties of propagation of tsunamis.  

Shallow water equations have become the choice model of operational tsunami 

modelling for irrotational surface waves in the case of complex bottom elevation.  The 

run-up part basically deals with the KdV and fKdV equations for unidirectional 

propagation and effects of external noise and damping terms for the studies of tsunami 

run-up.  Several test-cases are presented to verify propagation and run-up model.  The 

simulation algorithm of this research is based on the lattice Boltzmann method (LBM).  

The aim of this research is to use the LBM to solve tsunami waves modelling.  Several 

problems for simulation of tsunami waves are generated with LBM.  The appropriate 

equilibrium distribution function is selected and extended to solve the related three-

dimensional problems and appropriate units are chosen and changed in accordance 

with lattice Boltzmann simulations and stability of lattice Boltzmann models.  These 

models are solved and the solutions with different boundary conditions are analysed 

to produce relevant patterns and behaviours, assumptions and approximations for 

modelling tsunami and seismic waves.  These analyses have been implemented via 

accurate, robust and efficient LBM for solving the tsunami sets of equations under 

complex geometry and irregular topography.  The graphical output profiles are 

generated by using Matlab version 2012. 
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ABSTRAK 

 

 

 

 

Kajian ini memberi tumpuan kepada model gelombang tsunami.  Sifat 

gelombang tsunami boleh dibahagikan kepada tiga bahagian mengikut syarat; 

penjanaan, perambatan dan limpahan (atau run-up).  Pola umum dan ciri-ciri penting 

tsunami boleh diramalkan dengan pelbagai set persamaan utama dan model yang biasa 

digunakan termasuk gelombang elastik, air cetek bukan linear dan persamaan 

Korteweg de Vries paksaan (fKdV).  Dalam usaha membina model tsunami, 

pemodelan ini dibahagikan kepada dua bahagian; bahagian pertama mengandungi 

gelombang seismik (gempa bumi) yang memberi tumpuan kepada persamaan 

gelombang elastik bukan linear.  Persamaan ini digunakan dengan jayanya untuk 

bahagian penjanaan tsunami dan terbukti memberi simulasi aliran kompleks penjanaan 

gelombang elastik yang sesuai.  Bahagian kedua pada dasarnya adalah berkenaan 

persamaan air cetek bukan linear yang sering digunakan untuk memodelkan 

perambatan tsunami dan kadang kala juga bahagian limpahan.  Kerja ini secara 

khususnya mengkaji sifat-sifat perambatan tsunami.  Persamaan air cetek telah 

menjadi model pilihan dalam pemodelan operasi tsunami untuk gelombang permukaan 

tak berputar dalam kes dongakan kompleks bawah.  Bahagian limpahan pada dasarnya 

berkaitan dengan persamaan fKdV untuk perambatan satu arah dan kesan bunyi luaran 

serta terma redaman dalam kajian limpahan tsunami. Beberapa kes ujian dibentangkan 

untuk mengesahkan model perambatan dan limpahan.  Algoritma simulasi kajian ini 

adalah berdasarkan kaedah kekisi Boltzmann. Tujuan kajian ini adalah untuk 

menggunakan LBM dalam menyelesaikan pemodelan gelombang tsunami.  Beberapa 

masalah untuk simulasi gelombang tsunami dijana dengan LBM.  Fungsi taburan 

keseimbangan yang sesuai diambil dan dilanjutkan untuk menyelesaikan masalah tiga 

dimensi yang berkaitan dan unit yang sesuai dipilih serta diubah mengikut simulasi 

kekisi Boltzmann dan kestabilan model kekisi Boltzmann.  Model ini diselesaikan dan 

penyelesaian dengan syarat sempadan yang berbeza dianalisis bagi menghasilkan 

corak yang relevan serta perilaku, andaian serta anggaran pemodelan gelombang 

tsunami. Analisis ini dilaksanakan menerusi LBM yang jitu, teguh dan berkesan bagi 

menyelesaikan set persamaan seismik dan tsunami di bawah geometri kompleks dan 

topografi yang tidak teratur.  Profil hasil grafik dijana dengan menggunakan Matlab 

versi 2012. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction  

 

 

 Natural disasters have had and will always have a major impact on human 

society.  Earthquakes can ravage large areas and bring suffering and grief to many 

people living in such regions.  The question remains why and how do earthquakes 

occur and which physical laws govern their behaviour?  Although we know a lot more 

today than only a hundred years ago, still there are many unanswered questions and 

more work will be needed to better understand these phenomena.   

 

 

 From old times, tsunamis have caused tremendous damages to human race.  In 

2004, Indonesia and other countries surrounding Indian Ocean were damaged by 

Sumatra tsunami.  Tsunami is generally caused by the earthquakes generated by the 

fault movement along the ocean trenches.  Countries bordering oceans with such 

trenches like Japan have high possibility to be attacked by the ocean earthquake 

tsunami.  Tsunamis exhibit a wide variety of diverse fluid dynamical features. General 

patterns and significant characteristics of tsunamis can be forecasted by different sets 

of governing equations.  Firstly, the shallow water equation has been one important 

and commonly used.  Main characteristics of tsunamis can be predicted by shallow 



2 

 

water equations which depict the irrotational motion of an incompressible inviscid 

fluid in the long wave limit.  The shallow water equation describes propagation of 

waves in weakly nonlinear and weakly dispersive media.  Peregrine (1967) is derive 

the some type shallow water equations for water of various depth, which can easily 

define the nonlinear transformation of irregular, multidirectional waves in shallow 

water.   The depth-integrated equations for the conservation of mass and momentum 

for an incompressible and inviscid fluid are characterized by shallow water.  The 

vertical velocity is assumed to vary linearly over the depth to reduce the 3D problem 

to a 2D one.  Secondly, Korteweg-de Vries (KdV) equation can predict the 

characteristic of tsunamis.  Tsunami propagation is often modelled by the (KdV) 

equation and forced Korteweg-de Vries (fKdV) equation, a non-linear evolution 

Partial Differential Equation (PDE). The most important characteristic of the KdV 

equation is a special class of solutions called solitary waves or solitons, in which a 

large number of physical applications are particularly significant for stable localized 

waves.  A simple example of a soliton is a tsunami wave.  Although the solitary wave 

is now well understood the theory behind it is still very active.   

 

 

 The simulation algorithm of the Modelling of earthquake and tsunami in this 

research work shall be based on the LBM.  This method has been selected due to the 

overall computational efficiency of the basic lattice Boltzmann algorithm, and its 

capability to deal with complex geometries and topologies.  The LBM is a mesoscopic 

lattice simulation method.  In the late 1980’s engineers and physicists were presented 

the LBM.  In many fields, lot of research work has been done, but the mathematical 

background is remaining vague.  It has been applied fruitfully in many research areas.  

Fields of utilization of LBMs are the modelling and simulation of incompressible flows 

in complex geometries, for instances the flow of blood in vessels, multiphase and multi 

component fluids, free surface problems, moving boundaries, fluid-structure 

interactions, chemical reactions, flow through porous media, suspension flows, 

magneto-hydrodynamics, semiconductor simulations, non-Newtonian fluids, large 

eddy and turbulence simulations in aerodynamics to mention but a few.  The limiting 

fluid-dynamic equations are determined by the scaling and the selection of the collision 

operator, where several models are possible.  For this purpose, LBMs are related to a 

great diversity of various problems.  Although LBMs are universally acclaimed for the 
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applicability to complex geometries and interfacial dynamics, intensive difficulties 

become visible in the case of boundary conditions.  To search expression in a 

comparably simple explicit algorithm on uniform grids with only local interactions is 

one of the advantages of lattice Boltzmann methods.  The parallelization of the 

algorithms for the speed-up of the computations is straightforward.  The improvement 

of differentiated quantities is a major advantage, without performing numerical 

differentiations.  

 

 

Historically, Lattice Boltzmann (LB) was derived from the lattice-gas 

automata (LGA) in the 1990s, although the two methods are independent.  The LGA 

traces particle movements on a lattice, and can recover the Navier-Stokes equations, 

thus simulating hydrodynamics.  LGA is unconditionally stable and are very good to 

simulate micro-flow with large intrinsic fluctuations.  However, LGA exhibits strong 

Galilean invariance (GI) violations, and they are limited to small Reynolds numbers.  

To overcome these deficiencies, LB was developed. Instead of tracing the movement 

of particles, LB traces the evolution of a density distribution function, which depends 

on position and velocity.  The velocity is discretized such that, in one time step, the 

densities move to the neighbouring lattice sites to which their associated velocities 

point.  This movement is called streaming. Between streaming steps, collisions occur 

at lattice sites and change the density distribution function. (Qian et al., 1993) 

introduced Bhatnagar, Gross and Krook (BGK)’s single relaxation time approximation 

to simplify the description of the collision.  The system evolves by means of one 

streaming and one collision per time step.  The macroscopic physical quantities mass 

and momentum are given by the velocity moments of the density distribution function.  

Because the standard BGK model describes the collision of ideal gases, the standard 

LB algorithm can only simulate ideal gas dynamics.  To simulate non-ideal fluids, the 

attractive or repulsive interaction among molecules, which is referred to as the non-

ideal interaction, should be included in the LB model.  From the research carried out 

on the application of LBM, much work has not been cited using LBM for modelling 

of Tsunami and earthquake.  
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1.2 Statements of the Problem 

 

 

 Whenever a mathematical model is used to represent or predict the behaviour 

of a real physical system there are two possible sources of error that should be carefully 

distinguished.  First, the set of equations assumed to govern the system will always 

oversimplify the true physical system.  Secondly, given the complexity of most 

physical applications, the governing equations will rarely be exactly solved 

analytically or numerically.  Computations will only be estimates of solutions to the 

already oversimplified system.   

 

 

Tsunamis and earthquake exhibit a wide variety of diverse fluid dynamical 

features and no single set of governing equations approximated by a numerical method 

will ideally model all of the features.  However, total models and significant features 

of tsunamis can be foretold by diverse set of governing equations: elastic wave 

equation, nonlinear shallow water equations and fKdV equation being important and 

commonly used examples.  

 

 

This research specifically studies the properties of tsunami waves. In particular 

the study includes all these parts of the wave, generation, propagation and inundation.  

Some of the problems that have been identified which are related to modelling of 

earthquake and tsunami are listed below:  

 

 

Seismic (Earthquake)  

1. Nonlinearity of elastic wave equation  

 

Tsunami (Hydrodynamics)  

1. Nonlinearity of Shallow water equations  

2. Korteweg-de vries (KdV) and forced Korteweg-de vries (fKdV) equation for 

unidirectional propagation and effects of external noise and damping term 

on the soliton solution of the fKdV equation.  
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Numerical method 

1. Standard of Lattice Boltzmann method (LBM) for sets of equations in 

order to handle tsunami and seismic waves and the stability and accuracy 

of the method.  

2. LBM for sophisticated geometry and irregular topography (the performance 

of LBM method for complex geometry and irregular topography).  

 

 

 

 

1.3 Objectives of the Study 

 

 

 The purpose of this research is to use the Lattice Boltzmann method (LBM) to 

solve Seismic (Earthquake) and Tsunami waves modelling and to provide a more 

accurate value of actual data.  This work will evaluate, using accurate, robust and 

efficient LBM numerical methods for solving the set of equations: elastic wave 

equation, nonlinear shallow water equations and KdV and fKdV equations in order to 

tsunami earthquake modelling. 

 

 

The objectives are outlined below: 

 

1. To solve and analyze the solutions of the governing equations with different 

boundary conditions via LBM when they are used for seismic (earthquake) 

and tsunami modeling. 

2. Execute and enhance the Lattice Boltzmann Method for modelling seismic 

wave propagation. 

3. Execute and enhance the Lattice Boltzmann Method for modelling tsunami 

wave propagation and inundation that are for compressible fluid flows and 

incompressible fluid flows (fKdV - shallow water equations).  

4. To find some patterns and physical models to understand behaviour, 

assumptions and approximations for modelling tsunami and seismic wave 

propagation. 
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5. To compare the numerical computations of LBM output with existing 

methods for seismic (earthquake) and tsunami. 

 

 

 

 

1.4 Scope of the Study 

 

 

 This study focuses on the three phases of tsunami and the numerical solutions 

developed for the sets of equations by the use of lattice Boltzmann method. This aims 

to investigate the implementation of the LBM formulation for the elastic wave, shallow 

water waves and fKdV equations which are based on tsunami models.  

 

 

In the first phase, this covers the generation process of the diffusion and non-

diffusion P-waves only. We apply LBM approach to its modelling to help understand 

how tsunami occurs at the initial stage. The second and third phases deal respectively 

with shallow water waves which are often used to model tsunami propagation, and 

fKdV which is used to model tsunami inundation. More precisely, we discuss the 

numerical discretization of the governing equations in the LBM framework on certain 

specified geometries, e.g. oscillatory bottom, irregular bottom, etc. Zou and He, 

boundaries are considered and their effects on the models are investigated. Owing to 

the potential of LBM which include easy coding, excellent computational efficiency 

for large data sets,  we extend the standard of LBM for modelling of tsunami flows in 

three dimensions, investigate the stability and accuracy of the method and its 

performance in real computing environment. 
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1.5 Significance of the Study 

 

 

 Natural hazard can arise at any time in coastal areas around the world, for this 

purpose tsunamis are significant to study.  In an effort to gain a more complete 

understanding of tsunamis and generate stronger warning systems, there are monitors 

throughout the world's oceans to measure wave height and potential underwater 

disturbances.  The forecasting of earthquakes cannot be done, but foreseeing can be 

possible.  Understanding behaviour, assumptions and approximations made in physical 

models is necessary.  Forecasting of earthquakes cannot be done, but they have some 

patterns and designs.  Sometimes foreshocks precede quakes, though they look just 

like ordinary quakes.  But every major incident has a cluster of smaller aftershocks, 

which follow well-known statistics and can be predicted.  The numerical simulation of 

physical phenomena serves as an alternative to classical solvers of partial differential 

equations, however, the lattice Boltzmann method is used frequently.  The LBM 

preserves the sequence between the elaboration of a theory and the formulation of a 

corresponding numerical model short and considered as a precious instrument in 

fundamental research. Hence, LBM has been chosen to study the behaviour, 

assumptions of earthquakes and Tsunami.  The use of LBM to model earthquake and 

tsunami will provide the opportunity to gain more understanding of the natural hazard 

and also to generate stronger warning systems.  In addition, this study provides the 

opportunity to check the performance of LBM method for complex geometry and 

irregular topography. 
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1.6 Thesis Outline 

 

 

This thesis consists of seven chapters.  The introductory Chapter 1 contains 

discussion on the introduction, background of the problem, present work, problem 

statement, objectives of research, scope of the study and significance of the study. 

 

 

In chapter 2, literature reviews on current researches works are shown. Gives 

an over view of previous work done by different researchers in the field of tsunami 

and seismology and geophysics to mathematical modelling and coastal engineering. In 

addition to that, mechanisms like the inundation, generation, and propagation of 

tsunamis are presented. The Lattice Boltzmann methods of solution in general and as 

applicable to these problems are rendered. 

 

 

In chapter 3, the method of the current research LBM algorithms is stated. 

 

 

In chapter 4, presents the mathematical derivation for elastic wave for the 

generation of earthquake. The simulation algorithm for elastic wave equation for 

tsunami wave modelling is the lattice Boltzmann and several test cases are presented 

to verify generation model. The characteristics and LBM model of the wave are 

discussed thoroughly. 

 

 

In chapter 5, illustrates the mathematical derivation of shallow water wave for 

the prorogation of tsunami. The simulation algorithm for shallow water wave equation 

is the lattice Boltzmann and several test cases are presented to verify propagation 

model. The characteristics and LBM model of the wave are discussed thoroughly. 
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In chapter 6, shows the mathematical derivation of KdV and fKdV for the 

inundation of tsunami. The simulation algorithm for KdV and fKdV equations are the 

lattice Boltzmann and several test cases are presented to verify inundation model. The 

characteristics and LBM model of the wave are discussed thoroughly. 

 

 

Finally, Chapter 7 presents the general conclusions of this research work and 

recommendations for future works. It also highlights the problems considered and a 

summary of the method used in solving the problem. 
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