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ABSTRACT 

 

 

 

 
The Malaysian crude natural gas contains toxic and acidic gases such as carbon 

dioxide, CO2 (20-30%), and hydrogen sulfide, H2S (0-1%), therefore it should be treated. 

The current gases treatment process including chemical solvents, adsorption process using 

hybrid solvents and membrane failed to meet the processing requirement. Instead, catalysts 

used for the CO2 methanation have been extensively studied and high potential towards 

converting CO2 gas to methane. In this research, a  series of lanthanide oxide based 

catalysts supported on alumina and doped with manganese and ruthenium were prepared by 

wetness impregnation method. The lower performance of monometallic and bimetallic oxide 

catalysts have steered the exploration of trimetallic oxide catalyst. The potential trimetallic 

oxide catalysts were calcined at 400
o
C, 700

o
C, and 1000

o
C for 5 hours separately. In-home-

built micro reactor, Fourier transform infrared (FTIR) spectroscopy and gas chromatography 

analysis (GC) were used to study the catalytic performance by determining the percentage of 

CO2 conversion and also the percentage of CH4 formation. From the catalytic screening, it 

was found that the catalysts with Ru/Mn/Ce (5:35:60)/Al2O3 calcined at 700
o
C, and 

Ru/Mn/Sm (5:35:60)/Al2O3 calcined at 1000
o
C achieved 100% CO2 conversion, Ru/Mn/Pr 

(5:30:65)/Al2O3 calcined at 800
o
C achieved 96% CO2 conversion were potential catalysts. 

The active species in the methanation reaction for each catalyst were MnO2, and RuO2 and 

CeO2 or Sm2O3 or Pr2O3 respectively. Using two series furnace reactors, all three potential 

catalysts showed the increasing of CH4 formation. For optimization, the parameters studied 

were calcination temperatures, based loadings, and catalyst dosage. The optimization was 

done by using response surface methodology (RSM) with Box-Behnken design which 

showed the significant parameters and optimum result of cerium with calcination 

temperature of 697.47
o
C, based metal ratio of 60.38% and catalyst dosage 6.94 g as 

suggested by RSM. This result was tested and verified experimentally with difference of 

only 1%. X-rays diffraction analysis showed that the catalysts imposed an amorphous phase, 

while field emission scanning electron microscopy illustrated the catalyst surface was 

covered with small and dispersed particles with undefined shape. From electron dispersive 

X-rays analysis revealed that there were a reduction of Ru in the used catalyst compared to 

the fresh catalyst for each potential catalysts. Nitrogen gas adsorption showed that the 

catalysts were mesoporous structure with type H3 hysteresis loop and Type IV isotherm. 

Electron spin resonance spectrum showed a free electron interaction due to the presence of 

the peak for each potential catalyst. Temperature programmed reduction analysis of 

Ru/Mn/Ce (5:35:60)/Al2O3 catalyst showed more reducible species compared to catalysts 

containing Sm and Pr due to the presences of more reduce species at lower reduction 

temperature. The postulated methanation reaction follows the Langmuir Hinselwood 

mechanism which initially involves adsorption of CO2 and H2 gases on the catalyst surface. 

For Ru/Mn/Ce (5:35:60)/Al2O3 and Ru/Mn/Sm (5:35:60)/Al2O3 catalysts the product 

obtained were CH4, CH3OH and H2O. Meanwhile, for Ru/Mn/Pr (5:30:65)/Al2O3 catalyst 

only CH4 and H2O were observed as a products of the reaction. Lastly, the spent catalysts 

were successfully regenerated by running under O2 flow at 100
o
C for 1 hour. 
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ABSTRAK 

 

 

 

 
Gas asli mentah Malaysia mengandungi gas toksik dan berasid seperti karbon 

dioksida, CO2 (20-30%), dan hidrogen sulfida, H2S (0-1%). Oleh itu, ia perlu dirawat. Pada 

masa kini, proses rawatan gas termasuk pelarut kimia, proses penjerapan menggunakan 

pelarut hibrid dan membran gagal memenuhi keperluan pemprosesan. Sebaliknya, mangkin 

yang digunakan untuk metanasi CO2 telah dikaji secara meluas dan mempunyai potensi yang 

tinggi untuk menukarkan gas CO2 kepada metana. Dalam kajian ini, satu siri mangkin 

berasaskan lantanida oksida disokong pada alumina dan didopkan dengan mangan dan 

rutenium telah disediakan dengan kaedah pengisitepuan basah. Prestasi mangkin mono 

logam dan dwilogam oksida yang lebih rendah telah mendorong kepada penerokaan 

mangkin trilogam oksida. Mangkin trilogam oksida yang berpotensi telah dikalsin pada suhu 

400
o
C, 700

o
C, dan 1000

o
C selama 5 jam secara berasingan. Reaktor mikro buatan tempatan 

dengan spektroskopi infra-merah transformasi Fourier (FTIR) dan gas kromatografi (GC) 

telah digunakan untuk mengkaji prestasi mangkin dengan menentukan peratusan penukaran 

CO2 dan juga peratusan pembentukan CH4. Daripada penyaringan mangkin didapati bahawa 

mangkin Ru/Mn/Ce (5:35:60)/Al2O3 pada suhu 700
o
C, dan Ru/Mn/Sm (5:35:60)/Al2O3 pada 

suhu 1000
o
C mencapai 100% penukaran CO2, Ru/Mn/Pr (5:30:65)/Al2O3 pada suhu 800

o
C 

mencapai 96% penukaran CO2 adalah mangkin-mangkin berpotensi. Dalam tindak balas 

metanasi, spesies aktif untuk setiap mangkin adalah MnO2 dan RuO2 dan CeO2 atau Sm2O3 

atau Pr2O3. Dengan menggunakan reaktor relau dua siri, ketiga-tiga mangkin berpotensi 

menunjukkan peningkatan pembentukan CH4. Untuk pengoptimuman, parameter yang dikaji 

ialah suhu pengkalsinan, nisbah asas, dan dos pemangkin. Proses pengoptimum ini telah 

dilakukan dengan menggunakan kaedah respon permukaan (RSM) dengan reka bentuk Box-

Behnken yang menunjukkan parameter penting dan keputusan yang optimum untuk cerium 

dengan suhu pengkalsinan 697.47
o
C, nisbah asas 60.38% dan dos pemangkin 6.94 g seperti 

yang dicadangkan oleh RSM. Keputusan ini telah diuji dan disahkan secara eksperimen 

dengan perbezaan hanya 1%. Analisis belauan sinar X menunjukkan bahawa mangkin 

membentuk fasa amorfus, manakala pelepasan medan mikroskopi pengimbasan elektron 

menggambarkan permukaan mangkin itu dipenuhi dengan zarah kecil dan tersebar dengan 

bentuk yang tidak sekata. Dari tenaga serakan sinar-X analisis pula menunjukkan terdapat 

pengurangan Ru pada mangkin yang telah digunakan berbanding dengan mangkin yang 

belum digunakan bagi setiap mangkin berpotensi. Penjerapan gas nitrogen menunjukkan 

mangkin berstruktur liang meso dengan keluk jenis histerisis H3 dan isoterma Jenis IV. 

Spektrum resonan putaran elektron menunjukkan interaksi elektron bebas yang disebabkan 

oleh kehadiran puncak bagi setiap mangkin berpotensi. Analisis penyahjerapan 

pengaturcaraan suhu dari mangkin Ru/Mn/Ce (5:35:60)/Al2O3 menunjukkan banyak spesies 

terturun berbanding mangkin yang mengandungi Sm dan Pr kerana kehadiran banyak spesies 

terturun pada suhu yang lebih rendah. Tindak balas metanasi diramal mengikut mekanisme 

Langmuir Hinselwood yang pada mulanya melibatkan penjerapan gas CO2 dan H2 pada 

permukaan mangkin. Untuk mangkin Ru/Mn/Ce (5:35:60)/Al2O3 dan Ru/Mn/Sm 

(5:35:60)/Al2O3, produk yang dapat adalah CH4, CH3OH, dan H2O. Manakala, untuk 

mangkin Ru/Mn/Pr (5:30:65)/Al2O3 hanya CH4 dan H2O dihasilkan sebagai produk tindak 

balas. Akhir sekali, pemangkin yang telah digunakan dan tidak aktif dijana semula di bawah 

keadaan aliran O2 pada 100
o
C selama 1 jam. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Natural gas is a vital component of the world's supply of energy. It is one of 

the cleanest, safest, and most useful of all energy sources. Natural gas affords clean 

burning and emits lower levels of potentially harmful by-products into the air (Curry, 

1981). Natural gas is considered 'dry' when it is almost pure methane, having most of 

the other commonly associated hydrocarbons removed. When other hydrocarbons are 

present, the natural gas is 'wet'. 

 

 

Naturally, natural gas is produced by the anaerobic decay of non-fossil 

organic materials. The primary component of natural gas is methane (CH4). It also 

contains heavier hydrocarbon gaseous such as ethane (C2H6), propane (C3H8) and 

butane (C4H10). Besides that, it also contains other toxic and acidic gaseous like CO2, 

N2, mercury (Hg) and H2S as investigated by Curry, (1981). 

 

 

Malaysia is currently a net exporter of natural gas and is the world’s third 

largest exporter after Algeria and Indonesia. In 2001, the country exported 49.7% of 

its natural gas production in the form of liquefied natural gas (LNG) to Japan which 

is the world biggest user, as well as to the Republic of Korea and Taiwan under long-

term contracts. The other 50.3% of Malaysia’s natural gas was delivered to the gas 

processing plants (Radler, (2003)). 
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However, Malaysia’s natural gas consists of several gaseous and impurities 

such as non-hydrocarbon gases which includes carbon dioxide. The presence of these 

impurities could make the natural gas fall under “sour natural gas” as they can cause 

the formation of corrosive compounds such as carbonic acid in the presence of water 

according to Speight, (2007). Sour gas also contains hydrogen sulfide, whereas sweet 

gas contains very little, if any, hydrogen sulfide. This will result in lowering the price 

of natural gas in worldwide market as well as causing difficulties for its distribution 

to the market. 

 

 

The chemical composition of Malaysia’s natural gas before it is refined is 

shown in Table 1.1 (Van Rossum, 1986). 

 

 

Table 1.1 Chemical composition of Malaysia’s natural gas  

Chemical Name Percentage (%) 

Methane (CH4) 40–50  

Ethane (C2H6) 5–10  

Propane (C3H8) 1–5  

Hydrogen Sulphide (H2S) 1–5  

Carbon Dioxide (CO2) 20–30  

 

 

Consequently, due to the impurities of the natural gas, especially CO2, the 

percentage of CO2 gases in the Malaysia and world have increased year by year. 

Figure 1.1 shows the percentage of CO2 emission based on various activities in 

Malaysia (Yusof et al., 2010). Fossil fuels supply more than 98% of the world’s 

energy needs, though unfortunately, the resulting combustions from the utilization of 

fossil fuels are one of the major sources of the green house gas CO2.  
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Figure 1.1 Percentage of CO2 emission from various activities in Malaysia (Yusof 

et al., 2010). 

 

 

The main objective of the United Nations Framework Convention on Climate 

Change (UNFCCC) is the stabilization of greenhouse gas concentrations in the 

atmosphere at a certain level to avoid the interference of dangerous anthropogenic 

with the climate system (Strakey et al., (1975)). The Protocol was adopted by Parties 

to the UNFCCC in 1997, and entered into force in 2005 as also been reported by Md 

Yassin (1987). As part of the Kyoto Protocol, which is an international treaty that 

sets binding obligations on industrialized countries to reduce emissions of 

greenhouse gases, many developed countries have agreed to a legal binding that 

required them to reduce their emissions of greenhouse gases in two commitment 

periods. The first commitment period applies to emissions in between 2008-2012, 

while the second commitment period applies to emissions flanked by the year 2013-

2020. The protocol was amended in 2012 to accommodate the second commitment 

period (Raupach et al., (2007)) but this amendment has not (as of January 2013) 

entered into legal force (James and Mark (2009)). 

 

 

For the developed countries to trade their commitments under Kyoto 

Protocol, they are allowed to trade their emission quotes among themselves and 

could receive credit for financing emission reduction as been reported by Zou et al., 

(2005). A carbon credit is a term for any tradable certificate or permit representing 

49% 

41% 

7% 

3% 

Transport

Industries

Residental and

commercial activities

Agriculture

https://en.wikipedia.org/wiki/Greenhouse_gas
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the right to emit one tonne of carbon dioxide or the mass of another greenhouse gas 

with a carbon dioxide equivalent to one tonne of carbon dioxide (Mc Naught and 

Wilkinson (1997)). The aim for carbon credit is to allow market mechanisms to drive 

industrial and commercial processes in the direction of low emissions or less carbon 

intensive approaches than those used when there is no cost to emit carbon dioxide 

and other GHGs into the atmosphere. 

 

 

Therefore, it is necessary to develop technologies that will allow the 

utilization of fossil fuels while reducing the emissions of green house gases. Green 

technology is an alternative that reduces fossil fuels and demonstrates less damage to 

human, animal and plant.Green technologies include such area as renewable energy 

sources, waste management, and remediation of environmental pollutants, sewage 

treatment and recycling together with water purification, as discussed by Ismail and 

Ishak (2011). Commercial CO2 capture technology that exists today is very 

expensive and energy intensive. Improved technologies for CO2 capture are 

necessary in order to achieve low energy penalties. Pressure swing adsorption (PSA) 

is one of the potential techniques that could be applicable for removal of CO2 from 

high pressure gas streams such as those encountered in Integrated Gasification 

Combined Cycle (IGCC) systems (Haldor (2005)). 

 

 

At present, Malaysia has already committed under UNFCCC to implement 

and regularly update to mitigate climate change by reducing the emission of all 

greenhouse gases. Oil and gas have been the main sources of energy in Malaysia 

which projected to upward trend from 1244 Petajoule (PJ) in 2000 to an estimated 

2218 PJ in 2010. Currently, the energy mix supply is made of gas (70%), coal (22%), 

oil (2%) and hydropower (6%). A new project to combust methane at Seelong 

Sanitary Landfill is expected to reduce CO2 emission more than 100,000 tonnes a 

year and the Jendarata Steam and power plant and Jenderata Palm Oil mill have the 

expected combined CO2emission reduction of more than 30,000 tonnes annually as 

reported by Lau et al., (2009) and Razak and Ramli (2008). 
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1.2 Gas Purification Process 

 

 

Gas processing is necessary to ensure that the natural gas intended for use is 

clean-burning and environmentally acceptable. One of the most important procedures 

of gas processing is the removal of carbon dioxide and hydrogen sulfide. The 

removal of acid gases (CO2, H2S and other sulfur components) from natural gas is 

often referred to as gas sweetening process. 

 

 

Amine treating is one of the processes used to remove CO2 and H2S from 

natural gas. Amine has a natural affinity for both CO2 and H2S which allows it to be 

very efficient and effective in the removal process. When CO2 reacts with water, it 

creates carbonic acid which is corrosive. CO2 also reduces the BTU value of gas and 

the gas is unmarketable as it reaches concentrations of more than 2% or 3 %. H2S is 

an extremely toxic gas that is also tremendously corrosive to equipment. Amine plant 

design is based on proven amine regeneration technology and incorporates several 

patent-pending processes to improve the reliability and ease of operation. This 

process has many advantages, especially in regards to its lower installation and 

removal costs. Amine sweetening processes remove these contaminants so that the 

gas is marketable and suitable for transportation (William and David (2005)). 

However, this method has a few limitation which are complex and have high capital, 

operating, and installation costs; a relatively high fuel cost and potential 

environmental issues. 

 

 

Another method is PRISM membrane from Air Product Company that can be 

used as a gas scrubber for natural gas. The CO2 gas needs to be removed to improve 

the heating value of the gas and to meet the pipeline specification. The benefits of 

this process include minimal maintenance cost, no involvement of hazardous 

chemical, as well as being easy to be installed and operated. Prism membranes will 

effectively separate carbon dioxide from hydrocarbon vapours (Michael, 2010). 

However, the performance is highly dependent on CO2 content in the raw feed gas, 

CO2 specification in product, supply pressure; permeate pressure, and operating 

temperature as investigated by Stookey, (1986). 
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Membrane separation process performs on the principle of selective gas 

permeation. When gas mixture is introduced to membrane, component of gas 

permeated along into membrane material and diffuses through the membrane 

material. Gas treating membrane provides a safe and efficient option for water 

vapour and carbon dioxide from natural gas. Components with higher permeation 

rates (such as CO2, H2, and H2S) will permeate faster through the membrane module 

than components with lower permeation rates (such as N2, Cl, C2H6 and heavier 

hydrocarbons). The primary driving force of the separation is the differential partial 

pressure of the permeating component. Therefore, the pressure difference between 

the feed gas and permeate gas and the concentration of the permeating component 

determine the product purity and the amount of carbon dioxide membrane surface 

required. 

 

 

For years, the iron sponge type process has widely been used by the industry 

to treat sour gas. An iron sponge is a cylinder shaped vessel containing iron oxide 

treated wood chips. The iron oxide reacts with hydrogen sulfide to from relatively 

inert iron sulfide and water. However, the iron oxide does not last forever and the 

effectiveness of the wood chips will eventually fall below acceptable standards. 

When this occurs, the iron sponge must be taken off-line and the old wood chips are 

replaced by a new fully charged material. There are increase concerns of the 

environmental impact associated with the disposal of spent material and labor costs 

for replacement. These would increase the number of scavengers with better disposal 

properties. 

 

 

Clauss process is the most significant method known in the removal of 

sulphur from hydrogen sulphide gaseous. The multi-step Claus process recovers 

sulfur from the hydrogen sulfide gaseous found in raw natural gas and for over 25% 

H2S contents. The Clauss process contains two steps which is thermal and catalytic. 

In the thermal step, hydrogen sulfide-laden gas reacts in a substoichiometric 

combustion at temperatures above 850°C such that elemental sulfur precipitates in 

the downstream process gas cooler. Usually, 60 to 70% of the total amounts of 

elemental sulfur produced in the process are obtained in the thermal process step. 

Then the process continues with catalytic processing which involves the use of 
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activated aluminiums (III) or titaniums (IV) oxide and serves to boost the sulfur 

yield. More hydrogen sulfide (H2S) reacts with the SO2 during combustion in the 

reaction furnace in the Claus reaction, and the product is in gaseous, and elemental 

sulfur. 

 

 

Even though several methods as mentioned above have been developed for 

the removal of acid gases from the natural gas composition, these methods have 

several general drawbacks such as its high cost and production of high heat of 

reaction. Therefore, a new method was focused in this study which is a more 

promising method that involves the utilization of the catalytic conversion system by 

using supported mixed metal oxides catalyst. 

 

 

 

 

1.3  Catalytic Methanation 

 

 

Methanation is a physical-chemical process to generate methane from a 

mixture of various gases out of biomass fermentation or thermal-chemical 

gasification as defined by Ponee (1978). Meanwhile, catalytic methanation reaction 

refers to a process for removing carbon monoxide and carbon dioxide from gas 

stream for producing methane by using catalyst (Mills and Fred, 1974). 

 

 

The essential requirement for the correct selection of the metal oxide catalyst 

system is its ability to accept and to activate CO2 and H2S. The acidic nature of CO2 

and H2S requires the employment of a catalytic system with Lewis basic properties 

such as Group VIII metals. The major reason for the much slower development of 

the catalyst science of mixed metal oxide is its significant complexity compared with 

single metal based catalysts such as the possible presence of multiple oxidation 

states, variable local coordination, coexisting bulk and surface phases as well as 

different surface termination functionalities such as M-OH, M=O or M-O as 

mentioned by Ertesva, et al., (2005). 
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The relative activity of various transition metals for methanation and 

desulphurization can be determined at atmospheric pressure under the conditions in 

which most other hydrocarbon molecules are likely to form. In a previous research 

by Vannice (1987), the order of decreasing activity of transition metals was Fe > Ni 

> Co and the activation energy for methanation of CO2 and H2 was in the range of 

23-25 kcal/mole. 

 

 

In natural gas purification, the conversion of carbon dioxide to methane is an 

important process. To form methane (CH4), hydrogen gas is used along with carbon 

dioxide and carbon monoxide gas (from incomplete methanation reaction) through 

methanation process as shown in Equation 1.1 and 1.2 below: 

 

 

       CO2 (g) + 4H2 (g)                  CH4 (g) + 2H2O (l)                               (1.1) 

 

        CO (g) + 3H2 (g)                    CH4 (g) + H2O (l)                                (1.2) 

 

 

The catalytic reactions depend on the interactions between the active sites and 

the reactants, in a series of adsorption-desorption and surface reaction steps, as well 

as heat and mass transfer (Saluko, 2005).  

 

 

 Since the catalytic process through methanation reaction provides the most 

effective way to remove CO2 and H2S in the natural gas, therefore, the present study 

was conducted in order to develop a catalyst based on lanthanide oxide by modifying 

the dopants using noble metal in order to fully remove these sour gases at high 

conversion percentage and, possibly, at low temperature. Lanthanide oxide was used 

because the chemistry of the lanthanides differs from the main group elements and 

the transition metals. The nature of the 4f orbitals and its ions has slightly different 

radii, leading to a small difference in solubility as reported by Holden and Coplen 

(2004). 

 

 

 

 

 

 

Catalyst 

Catalyst 
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1.4 Response Surface Methodology 
 

 

Response surface methodology (RSM) is a set of techniques used in the 

empirical study of relationship between one or more responses and a group of 

variables (Cornell, 1990). RSM is useful for developing, modelling, improving, and 

optimizing the important response variable in an experiment run through the 

analyzing of programs. RSM comprises of three techniques or methods 

(Montgomery, 1999): (1) statistical experimental design, particularly the two level 

factorial or factorial design, (2) regression modeling techniques, and (3) optimization 

for optimum operating conditions through experimental methods. The most common 

application of RSM is in industrial, biological and clinical science, social science, 

food science, and physical and engineering sciences. According to research 

conducted by Myers et al., (1992), the first-order model was motivated by Box and 

Hunter, (1954) by using orthogonal design. The second-order model, which is most 

frequently used, consists of the 3
k
 factorial, central composite designs (CCD), and 

Box-Behnken design. An approximate of the relationship between y and the 

independent variables for second-order model is shown in Equation 1.3 and 1.4 

where xi and xj are the design variables and β are the tuning parameters. 

 

 

     (1.3) 

 

  (1.4) 

 

 

The CCD is ideal for sequential experimentation and allows a reasonable 

amount of information for testing lack of fit while not involving an unusually large 

number of design points (Joglekar and May, (1987)). Alternatively, Box-Behnken 

presents some advantages such as requiring few experimental points for its 

application (three levels per factor) and high efficiency as discussed by Khuri and 

Mukhopadhyay, (2010). The use of Box-Behnken design is popular in industrial 

research because it is an economical design and requires only three levels for each 

factor where the settings are -1, 0, and 1. Recently, more emphasis for an 

improvement in response instead of finding the optimum response has been placed 

by chemical and processing fields (Myers et al, 1992). 
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1.5 Mechanism of Methanation Reaction Process 
 

 

The CO2/H2 methanation reaction follows the Langmuir Hinshelwood (LH) 

mechanism which involves initially the adsorption of CO2 and H2 gases on the 

catalyst surface. Adsorption, desorption and surface diffusion play an essential role 

in LH mechanism. Four assumptions of Langmuir-Hinshelwood are: (1) the surface 

of the adsorbent is uniform, (2) adsorbed molecules do not interact, (3) all adsorption 

occurs through the same mechanism, and (4) at the maximum adsorption, only a 

monolayer is formed. 

 

 

Therefore, it might be expected that the reaction rate should depend on the 

surface coverage of both species. Moreover, the dissociation of adsorbed H2 

molecule results in the formation of active H atom species, followed by dissociation 

of CO2 molecule. This theory was supported by Solymosi et al., (1981), who stated 

that CO2 dissociation on supported precious metal catalysts using a conventional 

pulse reaction was promoted by the presence of H and CHX fragments on a catalyst 

surface. They also proposed that CO2 adsorption and subsequent dissociation on 

transition metals proceed through electron transfer from a metal to a CO2 molecule to 

form anion radical species. Therefore, the adsorbed species attains a lower energy 

state once it has been adsorbed to the metal, thus lowering the activation barrier 

between the gas phase species and the support-adsorbed species. Afterward, the 

active H atom species attaches to the O atom to form water molecule and this process 

continuous until the carbon atom is fully attached with H atom to form methane. 

 

 

According to Equation 1.5, carbon dioxide is reacting with the catalyst 

surface, (S) by chemisorptions and creates an active species that adsorbed onto 

catalyst surface. This is followed by hydrogen molecule that also reacts with catalyst 

surface by chemisorptions and adsorbed onto catalyst surface as an active species.  

Both active species than react each other to produce products that is methane and 

water.  
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For the simplest possible reaction, methanation process can be described as 

shown in Equation 1.5 to 1.9. 

 

  CO2  +  S               CO2(ads)                                                             (1.5) 

 

  H2  +  S              H2(ads)                                               (1.6) 

 

  CO2(ads)  +  H2(ads)             CH4(ads)  +  H2O(ads)                             (1.7) 

 

  CH4(ads)             CH4(desorp)  +  S                                                     (1.8) 

 

  H2O(ads)             H2O(desorp)  + S                                                     (1.9) 

 

                       *S = Catalyst Surface 

  (ads) = adsorption of molecule on the catalyst surface 

  (desorp) = desorption of molecule on the catalyst surface 

 

 

 

 

1.6 Statement of Problem 

 

 

In Malaysia, population in urbanized area has been increasing rapidly and at 

the same time, demands for certain types of product by have increased in order to 

meet the current demands of the society. Modern society is highly dependent on 

vehicles such as cars, trucks and railways. Emissions from the vehicles rely mostly 

on burning fossil fuel, thus contributing to the many predominant green house gases 

(CO2, SO2, NO2) emitted into the air either locally or globally. Carbon dioxide is the 

most significant green house gas produced from the transportation activities and the 

effects brought by it is attributed to the global warming phenomenon if adequate 

controls or mitigation measures are not taken as investigated by Yusof et al., (2010). 

 

 

 The natural gas contains the most significant impurities, which are carbon 

dioxide (CO2) and hydrogen sulphide (H2S). Due to the impurities of CO2 and H2S, 

the natural gas will have lower quality and worldwide price. The reaction of CO2 and 

H2S with water could result into a highly corrosive acid which could rapidly destroy 

the pipelines and equipment as well as reducing the lifetime of equipment 

(Dortmundt et al., 1999). H2S itself is a colorless and flammable gas. It smells like 

rotten eggs that is toxic at extremely low concentration and can cause the loss of a 
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human’s sense of smell. Therefore, these gaseous need to be removed in order to 

prevent or minimize the release of hazardous gases into the environment. This will 

help to reduce problems such as acid rain, ozone layer depletion or greenhouse 

effect. Hence, suitable methods are needed to overcome this problem. 

 

 

Many methods on conversion of CO2 such as amine treating, membrane 

separation, and others have been developed and investigated by researchers. 

However, these methods have several drawbacks such as low selectivity, high cost, 

and most importantly, the methods only work in the presence of CO2 ≤ 10%. As 

Malaysia’s natural gas contains ≥ 23% of CO2 most of these methods are 

inapplicable in the efforts to convert the country’s natural gases. Therefore, an 

alternative method is needed that is more economical and environmental-friendly. 

 

 

Recently, an alternative method has been developed which is the catalytic 

conversion of CO2 via methanation reaction. This method removes the toxic CO2 gas 

and produces valuable methane simultaneously. It is also an economical method 

since the catalysts can be recycled, and it is also environmentally friendly as it does 

not emit any toxic gas into the air while the reaction takes place. 

 

 

From previous study, most catalysts used were nickel, cobalt, ruthenium, and 

iron deposited on an alumina support for CO2/H2 methanation technique. However, 

these catalysts are very sensitive towards chemical attack, thus the performance of 

catalysts was not promising due to lower conversion of CO2 in methanation process. 

Therefore, lanthanide oxide doped with noble metal was used in this study in order to 

overcome these problems by increasing the percentage conversion of CO2 at lower 

reaction temperature. The potential of lanthanide oxide has been widely used as a 

based catalyst in ethanol reforming, adsorbent for desulfurization in realistic fuel 

processor, polymerization, ammonia synthesis, oxygen assisted water gas-shift, and 

HCOOH hydrogenation. 
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1.7 Objectives  

 

 

Based on the problem statement which was focused on methanation reaction 

and the efforts to find the best catalysts for the conversion of CO2 gas and production 

of higher methane, several objectives for this study were developed. The objectives 

of this research are as follow:- 

 

 

1. To synthesize, characterize, and test the catalytic activity of supported 

lanthanide oxide doped manganese and cobalt with ruthenium as co-dopant 

catalysts for carbon dioxide methanation using fixed bed home-built micro 

reactor coupled with FTIR.  

2. To optimize the catalysts preparation by various calcination temperatures, 

ratio based loadings and catalyst dosage ratio in the catalytic testing by 

response surface methodology.  

3. To regenerate the spent catalysts from the reaction by running under O2 flow 

at 100
o
C for 1 hours. 

4. To propose the reaction mechanism through the analysis on the metal oxide 

surface and flue gas mixture. 

 

 

 

 

1.8 Significance of Study 

 

 

 The increasing carbon dioxide and other green house gases content in 

Malaysia which contributes to global warming must be treated. The most significant 

reason that contributes to CO2 emission is from transportations and chemical 

industries. Natural gas contains 23% of CO2 gas that contributes to acid rain 

phenomena when it reacts with water. Therefore, CO2 gas must be remove via 

methanation process which offers a green and clean technology to convert it into 

valuable methane gas. The methane produced can be used as fuel and in the case of 

natural gas, will improve the gas quality. This process is low cost and the catalyst 

used can be recycled. Lanthanide metals were used as the alternative catalysts and 
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are expected to be in low price, highly effective in reaction and can be highly 

activated at low temperature. 

 

 

 

 

1.9  Scope of Study 

 

 

In this research, lanthanide (samarium, cerium, praseodymium, lanthanum, 

neodymium, and gadolinium) oxides were used as catalyst’s based while the dopants 

used were manganese and cobalt nitrate salt as precursor. The preparation of catalyst 

was conducted by incipient wetness impregnation method. Then the catalytic activity 

testing was conducted by using simulated natural gas and was carried out by the 

mixing of hydrogen and carbon dioxide gases (4:1) in a house-built micro reactor. 

The optimization parameters was done by Box-Behnken design with three critical 

parameters which are calcination temperature, ratio based loadings and catalyst 

dosage. The mechanistic study was conducted using Ru/Mn/Ce (5:35:60)/Al2O3, 

Ru/Mn/Sm (5:35:60)/Al2O3 and Ru/Mn/Pr (5:35:60)/Al2O3 catalysts using FTIR, GC 

and HPLC. The characterizations of catalyst were conducted by using various 

analytical techniques such as TGA-DTA, FESEM-EDX, XPS, ESR, TPR, XRD, 

FTIR, and NA techniques. The detailed research study is summarized in Figure 3.1. 
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