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ABSTRACT 

Existing soil at construction site may not always be suitable for supporting 

structures. Hence, various techniques can be utilized to improve the shear strength, 

increase the bearing capacity, increase the factor of safety, and reduce the settlement, 

shrinkage and swelling of soft soils. Among the improvement techniques, preloading 

and radial preloading using prefabricated vertical drainage are two popular methods in 

order to improve soft soils. Recently, a new concept of radial preloading has been 

presented under the name of expanded piers or expanded piles. In this method, an 

expandable membrane is expanded by means of an injection of air pressure to make 

an expanded cylindrical cavity, and is filled with a suitable material such as concrete 

or sand. Thus, the expanded element and the surrounding soil provide a stiffer 

component compared to the untreated soil. The main focus of this study was an 

evaluation of the effect of the diameter ratio (DR= final diameter of membrane after 

expansion / initial diameter of membrane before expansion) on the load capacity of the 

pile under upward and downward loading. To achieve these aims, 18 physical 

modelling tests on white Kaolinite were carried out to determine the pile pull out 

capacity and bearing capacity of the piles. Hence, the diameter ratios of 1.5, 2 and 2.5 

times the initial diameter of the cylindrical cavity were selected.  In this study, two 

methods were used to perform the expanded piles, radial expansion and radial 

expansion with surcharge. A series of physical modelling was designed to assess the 

different behavior of these two methods. In addition, a series of numerical modelling, 

based on the soft soil and Mohr-coulomb model, were conducted to simulate the pile 

behaviour and verification of the laboratory results. Based on the obtained results in 

the pull out tests, a significant increase was observed in the load capacity equal to 86%, 

132% and 153%, for diameter ratios equal to 1.5, 2, and 2.5, respectively, in the soft 

clay for expansion method. The increase in load capacity were equal to 170%, 175% 

and 183% for the same diameter ratios, performed by means of expansion with 

surcharge method. Similarly, in the cases of compressive loading, the load ratios were 

increased equal to 40%, 47% and 53%, for diameter ratios equal to 1.5, 2, and 2.5, 

respectively, for expansion method. The increase in load capacity were 99%, 82% and 

69% for the same diameter ratios, performed by means of expansion with surcharge 

method. Moreover, results showed that with increase in the piles diameter equal to 

33% and 66%, the load ratios were increased up to 46% and 86%, for expansion 

method in case of pull out tests. Meanwhile, the load capacities were increased up to 

63% and 144% for the expansion method in case of compressive tests. Furthermore, 

the soft soil model can be considered to have good agreement to simulate pile 

behaviour under vertical loading with the effect of radial preloading.  
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ABSTRAK 

Tanah di tapak pembinaan yang sedia ada mungkin tidak selalunya sesuai 

untuk menyokong struktur pembinaan. Oleh itu, pelbagai teknik telah digunakan untuk 

meningkatkan kekuatan ricih tanah lembut, keupayaan galas, faktor keselamatan dan 

mengurangkan pengecutan serta pengembangan tanah. Antara kaedah pembaikan 

tanah, prapembebanan mendatar dengan menggunakan saliran menegak pasang siap 

adalah dua kaedah yang popular untuk meningkatkan kekuatan tanah lembut. 

Kebelakangan ini, konsep prapembebanan mendatar telah dijalankan dengan cara 

tetiang berkembang atau cerucuk berkembang. Dalam kaedah ini, membran 

dikembangkan dengan menggunakan tekanan udara bagi mengembangkan rongga 

silinder dan diikuti dengan prosess pengisian dengan mengunakan bahan- bahan yang 

sesuai seperti konkrit atau pasir . Oleh itu, membran tersebut dan tanah sekitarnya akan 

menjadi komponen yang lebih keras berbanding dengan tanah yang tidak dirawat. 

Tujuan utama kajian ini adalah untuk menilai kesan prapembebanan mendatar dalam 

nisbah garis pusat (DR = diameter membran selepas pengembangan / diameter 

membran sebelum pengembangan) terhadap keupayaan cerucuk di bawah 

pembebanan secara menegak keatas dan ke bawah. 18 ujian pemodelan fizikal telah 

dijalankan terhadap Kaolinit untuk menentukan keupayaan tarik keluar dan keupayaan 

galas cerucuk. Oleh itu, nisbah diameter 1, 5, 2 dan 2.5 kali garis pusat awal rongga 

silinder telah dipilih. Dalam kajian ini, dua kaedah telah digunakan untuk 

menghasilkan cerucuk berkembang, pengembangan mendatar dan pengembangan 

mendatar dengan surcaj. Satu siri pemodelan fizikal telah diadakan untuk mengaji 

kelakuan kedua-dua kaedah tersebut. Di samping itu, satu siri model fizikal yang 

berdasarkan tanah lembut dan model Mohr- Coulomb diadakan untuk mensimulasikan 

kelakuan cerucuk dan pengesahan data makmal. Berdasarkan keputusan yang 

diperolehi dalam ujian tarik keluar, peningkatan yang ketara telah diperhatikan dalam 

kapasiti beban bersamaan dengan 86% , 132 % dan 153 %, untuk nisbah diameter 1,5 , 

2, dan 2.5 bagi kaedah pengembangan tanah liat lembut. Peningkatan kapasiti beban 

adalah sebanyak 170%, 175 % dan 183 % bagi nisbah diameter yang sama, yang 

dilakukan dengan cara pengembangan dengan kaedah surcaj. Begitu juga, dalam kes-

kes pembebanan mampatan , nisbah beban bertambah sebanyak 40 % , 47% dan 53 %, 

untuk nisbah diameter sama dengan 1,5 , 2, dan 2.5, bagi kaedah pengembangan. 

Peningkatan kapasiti beban adalah 99%, 82% dan 69 % bagi nisbah diameter yang 

sama, dilakukan dengan menggunakan kaedah pengembangan dengan surcaj. Selain 

itu , keputusan menunjukkan bahawa dengan peningkatan diameter cerucuk yang 

bersamaan dengan 33% dan 66 % , nisbah beban telah meningkat sehingga 46% dan 

86 %, bagi kaedah perkembangan dalam kes ujian tarik keluar. Sementara itu, kapasiti 

beban telah meningkat sehingga 63% dan 144 % bagi kaedah pengembangan dalam 

kes ujian mampatan. Selain itu, model tanah lembut merupakan model yang paling 

sesuai untuk mensimulasikan kelakuan cerucuk dibawah bebanan menegak dengan 

kesan pra-bebanan mendatar. 
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CHAPTER 1 

1 INTRODUCTION 

1.1  Background of the Study 

Concurrent with the development of human societies, construction of 

buildings, embankments, storage silos, bridges on soft soils is inevitable. In the 

meantime, new methods and innovations play important role to improve problematic 

soils, especially soft clay. Often, new approaches involve lower final price, greater 

ease and reduced time. Among known soil improvement methods such as stone 

columns, compaction grouting, compact rammed aggregate piers, installing auger cast 

pile, tapered displacement piles, pressure-inject piles and helical piers, use of the 

methods according to radial preloading concept have been recently noticed by 

engineers because of the mentioned benefits. These methods relate to a method and 

apparatus for reinforcing soil by improving the stiffness of soil to limit vertical 

settlement and increase bearing capacity. This invention, which is called expanded pier 

or pile can be installed in greater depths in comparison with similar methods. In 

addition, the cost of the performance of these piers is significantly less than utilizing 

aggregate piers or similar reinforcing mechanisms. 

In practice, radial preloading refers to prefabricated vertical drainage system 

known as prefabricated vertical drainage (PVD) (Binder, 201; Almeida et al., 2000; 

Dhar et al.). Recently, however, another immersion concept has been introduced by 

US. Patent NO 6354768 by Fox in 2002. This patent has suggested a new technology 

for soft soil improvement. In this method, an expandable membrane is inserted in the 

soft ground and expanded several times its initial cross-sectional area or to any desired 

diameter using air, slurry, sand, foam, gas, liquid, solid substance, composition or 
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another combination. The shape and dimension of the cavity can vary desired. Due to 

radial expansion, the surrounding soil is densified, stressed and strained radially, 

thereby shear strength and vertical stiffness is significantly increased. In this way, the 

settlement of the surrounding soil of the expanded membrane is reduced and also 

bearing capacity of the pile is increased. Figures 1.1 shows an expandable membrane 

before and after expansion.  

 

Figure 1.1 Expanded Pier before and after expansion (Geopier, 2003) 

The invention can, however, be utilized to stiffen clays, silts, loose sands, peats 

and organic soils. When preload piers are installed as a group, they are expected to 

improve the surrounding soil matrix through densification and consolidation. As 

mentioned, this method would be highly desirable as an improved method and 

apparatus for increasing the stiffness of soil at a depth of up to one hundred and fifty 

feet and at a cost which is significantly less than the cost of utilizing aggregate piers 

or other soil reinforcing systems. The cost per foot of building is 15% to 30% cheaper 

than aggregate pier. The stiffness of each cell is five to twenty times greater than the 

stiffness of the soil. Furthermore, it can be utilized to stiffen clays, silts, sands which 

are harder and denser than said soft clays, soft soils, and loose sand; it can also be 

utilized to stiffen peat and organic soils and landfills; and can be used to generate 

stresses and strains in almost all types and classifications of soils.  
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In fine cohesive soils such as soft clays, radial expansion causes radial 

consolidation. Due to this consolidation, excess pore water pressure is increased. Over 

time, effective mean stress is increased due to dissipation of pore water pressure and 

consequently, soil stiffness is enhanced and settlement can be decreased. It should be 

noted that the effective stress is considerably reduced with increasing the distance from 

the centre of the pier.  

Depending on the foundation which is used, the settlement can be uniform 

(Choobbasti et al., 2011), or non-uniform such as embankments. In these cases, a 

section of the applied load is transferred by piers and the other section is directly 

transferred by the surrounding soils. Indeed, the vertical load is distributed into two 

parts, the first part directly on the pier, and the second part on the surrounding soil. 

Depending on the stiffness of the piers and surrounding soils, one pier can be 

considered as a single pile or as a part of the soil improvement system (Been and Sills, 

1981). The ratio between stresses, which are divided between the column and 

surrounding soil, can be constant with increasing displacements in different piers such 

as compaction columns (Kirsch and Sondermann, 2001). At the boundary of the pier 

group, deformation in the horizontal direction is zero when all of columns are loaded. 

Another factor that can affect on the distribution of load between soil and piles 

is the spacing between the piles. In the expanded pile group, the optimum spacing of 

preload piers increase with increasing soil stiffness and final radius of expanded piers. 

The cell has a stiffness which typically, but not necessary, is two to ten times the 

stiffness of the soil in which membrane is utilized. The shortest distance between each 

pair of cavities is about one to ten feet. The maximum diameter or width of each cavity 

is about six to forty-eight inches. Membranes extend to depths of two hundred feet if 

the aggregate pier was comprised of cavity and tamped.  
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Cavity expansion theory can be interpreted as well as this technique which 

there are reliable finite element methods solutions. Based on these solutions, stress 

changes with the increasing radial distances from the centre of the expanded cavity, in 

similar conditions for pile driving. This theory can also be used to solve other 

geotechnical problems such as a cone penetrations, explosion, or grout injection in the 

soils.   

1.2 Problem Statement 

Low bearing capacity of the piles, which are subjected on the upward and 

downward loading, is one of the most important problems in the construction of 

buildings, embankments, water storages, and bridges in soft soils, particularly in soft 

clayey soils (Nazir and Azzam, 2010; Shanker et al. 2007; Stuedlein and Holtz, 2012). 

Moreover, increasing the shear strength and vertical stiffness for control of the 

Figure 1.2 Performance method of expansion pile with surcharge (Fox, 2002).   
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settlement are the most important concerns of civil engineers (Santagata et al., 2005; 

Liao et al., 2006).  

In another aspect, traditional improvement soft soils methods such as pile 

driving, bored piles, stone columns and rammed aggregate piers have been intensely 

studied, and their fundamental concepts have been identified  (Fellenius,1999; Van 

Impe, 2008; Chin and Meng, 2003; Hunt et al., 2002 ). Currently, several new concepts 

have been developed by a number of engineers in recent years such as radial preloading 

using innovative methods (Biringen and Edil, 2003). Some aspects of radial preloading 

methods such as radial consolidation effects and changes in the shear strength and 

stiffness in the horizontal and vertical direction on the surrounding soil have been fully 

studied (Handy and White, 2006b; Xiao et al., 2011; Randolph et al., 1979).  

Furthermore, the main focus of laboratory experimentation was on the effect 

of the pile driving or performance of the piles (Handy and White, 2006a; Yin and Fang, 

2010; Bian, et al. 2008). As mentioned earlier, the main function of expanded piers is 

the densification of surrounding soil, which have been studied by the other researchers, 

completely, as mentioned in the previous section. Meanwhile, there is no research on 

the settlement and bearing capacity on the expanded pier not on the soil. Nonetheless, 

no research on the variation of the piles behaviour under vertical loading for piles have 

been performed by expanded piles method. Therefore, it is important to fully 

understand the variation of the load capacity in the case of pull out and compressive 

conditions for different performance methods on side friction.  

1.3 Objective of Study 

The main purpose of this study is to investigate pile behaviour under vertical 

loading including drag and compressive conditions due to radial preloading in soft 

clay.  A series of physical modelling on a small scale were conducted on rigid and 

floating piles with different performance methods including without expansion, with 

expansion and expansion with surcharge to evaluate two issues consisting of expanded 

diameter ratio on the pile pull out capacity and load capacity.  The results of the 

file:///C:/Users/paymanneda/Downloads/payman%20complete%20tez%20proof%20reading%20-26-7-2014%20(3).docx%23_ENREF_1
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physical modelling were validated by finite element from different aspects in order to 

predict and apply the results to actual problems. In order to achieve the above aims, 

the following objectives have been mentioned. 

1) To demonstrate the effect of radial preloading on the load capacity of the 

expanded pile. 

2) To study the effect of the surcharge on the load capacity of the expanded pile due 

to radial preloading. 

3) To investigate of the increase of pile diameter on the load capacity of the pile 

based on the different performance methods involving without expansion with 

expansion and with surcharge methods. 

4) To compare different criteria for pile bearing capacities to evaluate of the effect 

of radial preloading in compressive loading for different performance methods. 

5) To simulate of the pile behaviours based on the different performance methods in 

order to select the suitable constitutive model using a finite element software. 

6) To validate the numerical model and modelling physical experiment based on the 

performance methods and pile diameter increase. 

1.4 Scope of the Study 

To achieve the mentioned goals in the previous section, eighteen physical 

modelling and thirty six numerical modelling were conducted on a straight single 

floating pile on white Kaolin as a soft clay. In each case, three piles with an equal 

length and different diameters were compared with three piles with same length and 

with an equal initial diameter, and final diameters equal the first group of piles, which 

were subjected on the radial preloading, for two different performance methods and 

different loading conditions. Based on the mentioned aims and conditions the 

following scopes were considered during this research.  

1) Only a single pile was intended to study of pile behaviour under vertical loading 

due to radial preloading. In practice, expanded piles could be utilised alone or as 

a group of improvement elements. 



     7 

 

 

2) In this research, piles were subjected to vertical loading.  

3) Soft clay has been assumed as a saturated clay with undrained behaviour during 

vertical loading and drain behaviour during consolidation process.   

4) Soil was homogenous as an ideal condition. 

5) In this investigation, it was assumed that the pile is straight and vertical. 

6) In this research, only floating piles were simulated. 

7) In order to simulate of the pile behaviours, an effective stress analysis was 

considered because of drained behaviour of the soil during consolidation process. 

It is necessary to say that the behaviour of piles under vertical loading step were 

undrained.  

1.5 Limitations of Research 

In this research, normally saturated consolidated soft clay was improved by an 

expanded pile which was formed by a cavity expansion and filled by light concrete. 

There are some limitations which were dealt with during this study as follows: 

1) In the physical modelling, a complete cylindrical cavity should be formed. 

However, an expandable rubber membrane was utilized as a radial preloading 

device, and as a result the shape of the cavity could not be exactly the same as a 

cylindrical cavity.  

2) In the numerical modelling, a prescribed displacement was used to form a 

cylindrical cavity. However, in practice this shape cannot be formed as a 

cylindrical cavity, exactly.  

3) As an undrained shear strength of 10 kPa had been intended for soft clay, it cannot 

completely represent soft clay. On the other hand, more soil stiffness can be 

considered to exactly and completely develop the obtained results. 

4) As an effective analysis should be considered to simulate the soil behaviour of the 

pile in the soft soil model in the software, the triaxial test could not be conducted 

on very soft clay. However, in this research a modified method for installation of 

the soft clay in the triaxial test device was introduced to apply for soft clay with 

at least 10 kPa for undrained shear strength. 



     8 

 

 

5) It is preferred that a strain control method be used to obtain the load-displacement 

curves for compressive tests, while in this study a stress control method was 

utilized. However, for the pull out tests, a strain control method was considered. 

6) In physical modelling in order to simulate of the surcharge effect a rigid plate was 

considered instead of the upper layer of the soil on the pile. It necessary to say that 

the behaviour of the soil I the field is on the stress control, while in the model is 

on the stress control.  

1.6 Significance of Research 

In recent years, the engineering community has proposed new alternative 

methods to improve soft soils. These methods should be more applicable, economical, 

and easy to perform and save time.  Accordingly, using radial preloading concept is 

more noticeable by designers and employers. The previous researches in the literature 

are mostly concerned with load capacity of vertical piles and the effects of pile driving 

on the surrounding soils (Randolph et al., 1979).  In another respect, variation in soil 

stiffness has been investigated on the surrounding soils due to radial preloading 

(Biringen, 2006). In addition, some studies have focused on the radial expansion of 

surrounding soil due to performance of aggregate piers such as stone columns. 

(Zahmatkesh and Choobbasti, 2010). As can be seen there is no investigation on pile 

bearing capacity or pull-out capacity behaviour, which has been performed directly 

after radial preloading. In this research, the main focus was on the effect of radial 

preloading on pile behaviour in several aspects. The following benefits can be derived 

from this research:  

 Based on the obtained results of this study, more realistic design can be conducted 

to improve soil mechanism by expanded piers to reduce settlement and increase 

pile pullout capacity and bearing capacity. 

 The results of this research can be used to obtain a general idea from which to 

choose the expansion diameter ratio in the radial preloading to design expanded 

piles under vertical loading including compressive or tensile loading. 
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 The presented study includes the effects of two different performance methods. 

Accordingly, the most suitable method can be selected based on the concluded 

results of the practical design parameters, such as selection of the suitable 

diameter for piles, best expansion ratio, and best performance method.   

 Another finding of this research is which constitutive model can be more suitable 

to simulate the pile behavior under vertical loading due to radial preloading. In 

addition, the selected model can be used to predict of pile behaviour for different 

conditions.  

 A comparison study was conducted to determine the effect of the selection of the 

criteria for compressive loading. Based on the results, a designer can choose the 

best criteria for pile-settlement behavior during the calculation of practical 

parameters of expanded piles in practice.  

1.7    Organization of Thesis 

To meet the mentioned objectives, this thesis presents the results of a series of 

experimental and numerical modelling to develop an understanding of the influence 

radial preloading on pile under vertical loading in two main sections including pile 

bearing capacity and pile pullout capacity. In each section a series of physical 

modelling in laboratory size were conducted on very soft clay with shear strength equal 

to 10 kPa. Each physical modelling was verified by two different numerical modelling 

including Soft Soil model and Mohr-Coulomb model in order to find the best model 

to simulate pile behaviour from different aspects which coincide with real pile 

behaviour under various expansion radius.  In the section dealing with pile bearing 

capacity and pile pullout capacity, three aims were followed. First, the expansion 

diameter ratio was studied to evaluate variations of pile bearing capacity and pile 

pullout capacity. Second, the same parameters were investigated for the same piles 

with the same different expansion ratios. However, in this section the heave of the 

surrounding soil of the pile due to radial preloading was disregarded by using a layer 

of surcharge. In the third section, three piles with different diameters were compared 

to three other piles with same specifications, but different performance methods.  In 
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addition, a series of basic tests including initial and supplementary tests were carried 

out to obtain the soil parameters for physical and numerical modelling. 

Based on the foregoing, this thesis consists of 6 chapters and the essence of 

each chapter is as follows:  

Chapter1 includes a background of the problem associated with the 

improvement of soft soils by radial preloading and states the objectives, scopes, and 

significance of study in this research. Chapter 2 reviews the literature of the preloading 

method to improve soft soils, the cavity expansion theory, which supports this study 

and expanded piles as an improvement element. Moreover, fundamental concepts 

including shear strength, soil stiffness, pile bearing capacity, pullout capacity are 

described to clarify the basic concepts in this study. Chapter 3 describes research 

methodology in detail. Material of testing, equipment, measurement methods, 

instrumentations are addressed in this chapter. In addition, model testing including 

details of the design and performance of physical modelling setup, supplementary 

tests, and scaling factors are explained. Experimental modelling, including the 

organization of the physical modelling, results of the load-displacement curves and 

basic tests results are presented in Chapter 4. The results of the numerical modelling, 

including the simulation of experimental modelling based on two numerical models 

and a validation of the numerical model and model of physical experiment are depicted 

in Chapter5. Chapter 6 summarizes the contributions, outcomes, and conclusion of this 

study. In addition, a series of recommendations are stated for future researches. 
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