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ABSTRACT 

Psychrophiles are cold loving organisms that have adapted to live in 
permanently cold environments. These microorganisms synthesize psychrophilic 
enzymes with high catalytic efficiencies at cold temperaturesranging from -20°C to 
+10°C. This research intends to perform an in silico analysis of the cold adaptation 
of Glycosyl hydrolase enzymes isolated from psychrophilic yeast Glaciozyma 
antarctica. Two enzyme were selected; β-mannanase (PMAN) and β-glucanase 
(PLAM) from two different glycosyl hydrolase families with different domains. A 
3D model was predicted for both genes using a fold recognition method. The 
proteins were comparatively studied against their mesophilic, thermophilic, and 
hyperthermophilic counterparts. The study of these enzymes illustrates that they 
mostly use similar strategies for cold adaptation.The structure of PLAM and PMAN 
consist of longer loops in three different positions. Their structure also has several 
amino acids substitution including increased number of alanine, glycine, and polar 
residues and decreased number of proline, arginine, and hydrophobic residues. The 
PLAM and PMAN structure showed longer motions around the entrance region to 
active site. A lower number of salt bridges and H-bonds have been observed in the 
PLAM and PMAN structure. PLAM consists of 5 salt bridges while its homologous 
proteins have 9, 7, and 18 salt bridges, respectively. Also, the number of H-bonds per 
residue is 0.54 where it is 0.62, 0.63, and 0.70 for its homologous counterparts. 
Furthermore, PMAN includes 5 salt bridges in its structure while its homologous 
counterparts have 10, 14, and 21 salt bridges, respectively. The number of H-bonds 
per residue for PMAN is 0.62 while it is 0.71, 0.73 and 0.78 for its homologous 
counterparts. The PLAM structure has 41% of secondary structure, while its 
homologous counterparts have 54%, 58%, and 60% of secondary structure. Also, this 
percentage is 47% for PMAN, and 48%, 50%, and 53% for its homologous proteins. 
Additionally, they also use different strategies related to the role of salt bridges in 
their structure. The PLAM structure contains alternative salt bridges connecting inner 
and outer leaflets, while the PMAN structure includes weakly linked salt bridges 
between residues located on a loop instead of β-sheet. In conclusion, in silico 
analysis of two psychrophilic proteins revealed novel characteristics of these cold 
adapted enzymes. The analysis showed the adopted strategies by these two proteins 
in contributing to the general and local flexibility of their structure and increase 
capability of the enzymes to be active at cold temperatures. The presented findings in 
this research will assist future attempts in the rational design of enzymes with 
enhanced enzymatic capabilities.  
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ABSTRAK 

Organisma psikrofilik adalah organisma yang telah menyesuaikan diri untuk 
hidup dalam persekitaran yang sejuk kekal. Mikroorganisma-mikroorganisma ini 
mensintesis enzim psikrofilik dengan tujuan untuk mengekalkan kecekapan 
pemangkin pada suhu sejuk antara -20 ° C hingga + 10 ° C. Kajian ini bertujuan 
untuk melakukan analisis komputeran adaptasi suhu sejuk enzim glikosil hidrolase 
yang telah diasingkan daripada yis psikrofilik Glaciozyma antarctica. Dua enzim 
yang dipencil telah dipilih; β-mannanase (PMAN) dan β-glukanase (PLAM) 
daripada dua keluarga enzim glikosil hidrolase yang berbeza. Model 3D telah 
diramalkan untuk kedua-dua gen menggunakan kaedah "pengecaman lipatan". 
Protein dikaji secara perbandingan terhadap enzim mesofilik, termofilik, dan 
hipertermofilik. Kajian enzim ini menggambarkan bahawa kebanyakan enzim 
menggunakan strategi yang sama untuk mengadaptasi kepada keadaan sejuk. 
Struktur PLAM dan PMAN terdiri daripada gelungan-gelungan pada tiga kedudukan 
yang berbeza. Struktur mereka juga mempunyai beberapa perubahan asid amino 
seperti jumlah peningkatan alanina, glisin, jujuk amino polar dan beberapa prolin, 
arginina, dan jujuk amino hidrofobik yang dikurangkan jumlahnya. Struktur PLAM 
dan struktur PMAN menunjukkan pergerakkan lebih dinamik di sekitar kawasan 
pintu masuk ke tapak aktif enzim. Beberapa ciri yang menunjukkan penurunan dalam 
struktur PLAM dan PMAN adalah jambatan garam dan rangkaian H. PLAM 
mempunyai 5 jambatan garam manakala homolog mempunyai  9, 7, dan 18 jambatan 
garam. Bilangan rangkai H untuk setiap jujuk asid amino adalah 0.54 berbanding 
dengan 0.62, 0.63, dan 0.70 untuk protein homolog. Tambahan pula, PMAN 
mempunyai hanya 5 jambatan garam dalam struktur berbanding dengan protein 
homolog yang mempunyai 10, 14, dan 21 jambatan garam. Bilangan rangkai H untuk 
setiap jujuk asid amino untuk PMAN adalah 0.62 berbanding dengan 0.71, 0.73 dan 
0.78 protein homolognya. Struktur PLAM mempunyai 41% daripada struktur 
sekunder, manakala rakan-rakan homolog yang mempunyai 54%, 58%, dan 60% 
daripada struktur sekunder. Peratusan ini adalah 47% untuk PMAN, dan 48%, 50%, 
dan 53% berbanding protein homolog. Selain itu, mereka juga menggunakan strategi 
yang berbeza untuk menggunapakai jambatan garam dalam struktur mereka. Struktur 
PLAM mengandungi jambatan garam alternatif menyambung bahagian dalaman dan 
luaran, manakala struktur PMAN mempunyai jambatan garam yang lemah untuk 
mengaitkan di antara asid amino  yang dua terletak pada gelungan antara lembaran β. 
Kesimpulannya, analisis komputeran dua protein psikrofilik menunjukkan beberapa 
ciri-ciri unik yang membolehkan enzim ini berfungsi di dalam suhu sejuk kekal. 
Analisa ini menunjukkan strategi yang diguna pakai oleh kedua-dua protein dalam 
menyumbang kepada fleksibiliti secara umum dan khusus terhadap keupayaan 
struktur dan pengekalan keupayaan mereka menjadi enzim aktif pada suhu yang 
sejuk. Hasil kajian ini akan membantu dalam memperolehi enzim dengan aktiviti 
keupayaan tinggi melalui rekabentuk rasional enzim.
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  CHAPTER 1

1 INTRODUCTION 

1.1 Overview 

The wide spectrum of different environments presented by earth's biosphere 

require a variety of adaptive strategies to be live by organisms. Temperature is the 

key factor that affects the biochemical adaptation of living organisms to their 

environment. Organisms inhabiting extreme temperatures have been of particular 

interest because the isolated proteins from these organisms can remain stable and 

function at these environments. These proteins are often desirable for industrial 

processes and engineering proteins from organisms living at moderate temperatures. 

They also provide a unique opportunity for researchers to study relationships 

between their structural characteristics and biological functions.  

The majority (>80%) of the Earth’s biosphere is permanently exposed to 

temperatures below 5 °C (Margesin and Miteva, 2011). Psychrophiles are cold loving 

microorganisms that have adapted to live in permanently cold environments that are 

close to the freezing point of water. These microorganisms synthesize psychrophilic 

enzymes with high catalytic efficiencies at cold temperatures. This adaptation 

requires an adjustment in various cellular components, including the membrane, 

protein synthesis machinery, energy-generating systems, and other physicochemical 

characteristics. Enzymes from psychrophiles are supposed to be structurally more 

flexible than their mesophilic and thermophilic counterparts. This structural 

flexibility improves the ability of the protein to undergo conformational changes 

during catalysis and creates an enhanced catalytic efficiency at low temperature with 
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an inherent decrease in the chemical reaction rates. This establishes the proper 

plasticity around the active site that is important for the thermolability of enzymes to 

obtain high catalytic efficiencies at low temperatures (Margesin and Miteva, 2011). 

These specific characteristics of psychrophilic enzymes provide potential industrial 

applications in biotechnology and related fields. 

Psychrophiles can be found in a large range of microorganisms including 

Bacteria, Archaea, and Eukarya. They are mostly represented by bacteria (Gounot, 

1991; Russell et al., 1998), archaea (Siddiqui and Cavicchioli, 2006), algae (Morgan-

Kiss et al., 2006), yeast (Buzzini et al., 2012), plants and animals (Margesin et al., 

2007; Doucet et al., 2009), whereas the biggest psychrophiles are the polar fish 

thriving beneath the icepack (Eastman, 1993; Prisco et al., 1998; Giordano et al., 

2012). Accordingly, among extremophiles, psychrophiles are the most widely found 

microorganisms in terms of diversity, biomass, and distribution. 

The cold-adapted enzymes have a high biotechnological value due to their 

high thermolability at raised temperatures, their activity in organic solvents, and their 

high kcat at low temperatures (Roman et al., 2012). The enzymes are more productive 

than their mesophilic or thermophilic counterparts at low temperature, and thereby, 

the production processes can be economically done by efficiently saving energy. 

Therefore, psychrophilic enzymes are widely used in industrial applications such as 

household molecular biology, detergents, and baking.  

1.2 Challenges in characterization of psychrophiles 

Psychrophiles synthesize cold-loving enzymes permanently at near-zero 

temperatures to preserve their cell cycle. The activity of psychrophilic enzymes is 

mostly optimized at the expense of substrate affinity decreasing the free energy 

barrier of the transition state. Additionally, the moderate reduction of the catalytic 

activity at cold environment is ensured by a weak temperature dependence of these 

enzymes (Struvay and Feller, 2012). Furthermore, activity of enzymes at cold 

temperature is optimized by destabilization of the whole molecule or the structures 
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carrying the active site. As a result, the number and strength of all types of weak 

interactions are decreased, and therefore, dynamics of active site residues in the cold 

temperature are improved (Struvay and Feller, 2012).  

Recently, significant progresses have been obtained to illustrate cold 

adaptation of enzymes to extreme temperatures. However, there are several questions 

remain to be answered regarding the structural and functional properties of these 

psychrophilic macromolecules. The existing challenges include folding reactions at 

low temperature, kinetic parameters of cold-active enzymes, global and local 

flexibility of cold-adapted enzymes, macromolecular dynamics, and extreme 

environmental temperature. Biologists are highly interested to refine their knowledge 

of the strategies adopted by psychrophilic proteins to be active at cold environment 

using different related sciences including biochemistry, biophysics, microbiology, 

and enzymology.  

1.3 Problem Statement 

Nowadays, the need of enzymes with the capacity to perform their catalysis at 

low temperature is rapidly increasing. This could be due to their potential 

environmental application and also their usefulness in industrial processes. 

Psychrophiles have several remarkable biotechnological potential, which attract 

researchers to utilize them in several biotechnological applications. Understanding 

the molecular characteristics and behaviors of these enzymes has an enormous 

importance to efficiently develop their application in different industries.  

Glaciozyma antarctica is a pyschrophilic yeast living at cold, marine, and 

Antarctic regions. The optimum growth temperature of G. antarctica strain PI12 is 

12°C (D’Amico et al., 2003) where it can grow up to 18°C. Turchetti et al. (Turchetti 

et al., 2011) proposed a new classification of the yeast from L. antarcticum to G. 

Antarctica in 2011. Several cold-active proteins have been isolated from this yeast 

including chitinase (Ramli et al., 2012), α-amylase (Ramli et al., 2013). 
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Cold-adapted and heat labile mannanases have been reported from several 

psychrophilic bacteria, fungi and plants. However, there is no report on a cold-

adapted mannanase from psychrophilic or psychrotolerant yeast. Interest in the 

potential application of β-mannanases has increased in several industrial processes 

because of their important role in the bioconversion of lignocelluloses, one of the 

most abundant reusable resources in nature. 

Additionally, laminarinase is another cold-loving enzyme that is widely 

spread throughout bacteria, archaea and eukaryotes. To our knowledge, laminarinase 

has not been reported from yeast until now. The enzyme plays essential roles in the 

degradation of microbial saccharides by hydrolysing the β-1,3-linkages of glucans 

and, therefore, is crucial for nutrient uptake and energy production in these 

microorganisms. The enzyme has received increased attention due to its potential use 

in several biotechnological applications, including industrial processes, food 

industries, and bioremediation.  

The genome and proteome study revealed structural characteristics of 

organisms and facilitates to simulate, predict and infer functional properties of genes. 

The following main question has to be answered in this study: 

(i) How different glycosyl hydrolase family enzymes have been adapted to 

cold temperature?  

1.4 Research Goal and Objectives 

The main goal of this research is to study psychrophilic adaptation of 

Glycosyl hydrolase enzymes from the psychrophilic G. antarctica pI12 yeast. To 

achieve this goal, following objectives have to be met: 

(i) To model the structure of two novel Glycosyl hydrolase family enzymes 

from the psychrophilic yeast G. antarctica pI12 by comparative 

modeling. 
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(ii) To study and analyze interactions between the chosen Glycosyl hydrolase 

catalytic enzymes and the substrates. 

(iii) To study cold adaptation of the chosen Glycosyl hydrolase family 

enzymes from the psychrophilic yeast G. antarctica pI12 based on 

primary sequence, structure analysis, and molecular dynamics simulation. 

(iv) To investigate and establish novel strategies used by psychrophilic 

Glycosyl hydrolase family enzymes from the psychrophilic yeast G. 

antarctica pI12 to adapt with cold environment. 

1.5 Scope of the Study 

The research involves psychrophilic adaptation study of glycosyl hydrolase 

enzymes using in silico approch. In this work, two genes were selected belonging to 

G. antarctica including β-mannanase and β-glucanase, and subjected to comparative 

modeling.  

In order to effectively identify the cold adaptation mechanisms of glycosyl 

hydrolase enzymes, all analysis were performed comparatively using mesophilic, 

thermophilic, and hyperthermophilic counterparts of the selected genes. The 3D 

structure of the genes was further subjected to docking and molecular dynamics 

simulations and different structural and functional characteristics were studied via 

MD simulations. 

1.6 Thesis organization 

The thesis is organized in the following chapters: 
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Chapter 1 describes the research outline. It presents background of the study 

and problem statement. In sequel, the research goal and objectives are explained and 

scope of the research is discussed.  

Chapter 2 includes a review on literatures related to the study. As preliminary, 

basic concepts of the related subjects are described, and then, the chapter moves to 

description of related studies on research area. Finally, the recent trends of the 

research are explained. 

Chapter 3 presents the research methodology of this research including the 

operational framework of the research to reach the main objectives. Furthermore, the 

required methods and materials in this research are described. 

Chapter 4 shows the results of the structure prediction and cold adaptation 

study of a novel laminarinase (3.2.1.6, endo 1,3(4) β-glucanase). It includes the 

results obtained from the conducted experiments and discussions related to the 

defined objectives. 

Chapter 5 shows the structure prediction results and cold adaptation analysis 

of a novel mannanase (3.2.1.78, endo 1,4 β-mannanase). The results of conducted 

experiments and discussions related to the defined objectives are included in this 

chapter. 

Chapter 6 concludes the thesis by a general discussion on the research results. 

Furthermore, the chapter finally suggests the challenging and emerging trends for the 

future studies. 
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