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ABSTRACT 

 The objective of this study is to develop submerged polyvinylidene fluoride 
(PVDF) based hollow fiber ultrafiltration (UF) membranes with improved separation 
properties for oily wastewater treatment in which the membranes can also act as 
photocatalysis medium. The prepared membranes were characterized with respect to their 
morphological structure, surface roughness, hydrophilicity and separation performances. 
In the first stage of this study, PVDF based hollow fiber membranes incorporated with 
different titanium dioxide (TiO2) loading (0-4 wt%) were fabricated. The results indicated 
that when 2 wt.% TiO2 was incorporated into PVDF membranes, the permeate flux and 
oil rejection of 70.48 L/m2.h and 99.7 %, respectively, could be obtained when tested using 
250 ppm synthesized oily solution under vacuum condition. With increasing feed oil 
concentration from 250 to 1000 ppm, the permeate flux was declined but oil rejection was 
improved. In the second stage of study, PVDF membrane consists of 2 wt.% TiO2 was 
further investigated by incorporating different molecular weight (Mw) of 
polyvinylpyrrolidone (PVP) (10, 24, 40, 360 kDa) and the membrane filtration 
performance and water flux recovery were performed. The obtained results revealed that 
PVDF-TiO2 composite membrane prepared from PVP 40kDa was the best performing 
membrane owing to its promising water flux (72.2 L/m2.h) coupled with good rejection of 
oil (94 %). It is also found that with increasing PVP Mw, membrane tended to exhibit 
higher PVP and protein rejection, greater mechanical strength, smaller porosity and 
smoother surface layer. Regarding to the effect of pH, the permeate flux of the PVDF-
PVP40k membrane was reported to increase with increasing pH from 4 to 7, however, 
showed a decrease when pH was further increased to 10. A simple backflushing process 
could retrieve approximately 60 % of the membrane original flux without affecting the oil 
separation efficiency. The membranes were further studied by integrating with 
photocatalysis process. The investigation of various operating parameters such as TiO2 
catalyst loading, membrane module packing density, feed oil concentration and air bubble 
flow rates (ABFR) on the permeate flux, oil rejection and total organic carbon (TOC) 
degradation (in the bulk feed solution) were conducted. The average flux was reported to 
be around 73.04 L/m2.h using PVDF membrane incorporated with 2 wt.% TiO2 at 250 
ppm oil concentration with module packing density of 35.3 % and ABFR of 5 L/min. A 
remarkable TOC degradation and oil rejection as high as 80 % and > 90 %, respectively, 
could be reached under these operating conditions. In the final stage, an attempt was made 
to evaluate the effects of UV irradiation period on the membrane (2 wt.% TiO2) by 
exposing the membrane to UV light for up to 250 h. It was observed that permeate flux 
was increased and some cracks and fractures were formed on the membrane outer surface 
when it was exposed to 120 h UV light. Furthermore, the mechanical strength and thermal 
stability of irradiated membrane were also reported to decrease with increasing UV 
exposure time, suggesting a membrane made of excellent UV resistant polymer is highly 
required. The overall findings shown in this study provide useful information for the 
research of separation and degradation of oily wastewater and facilitate the development 
of hybrid submerged membrane photocatalytic reactor (SMPR). 
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ABSTRAK 

 Objektif kajian ini adalah membangunkan membran turasan-ultra (UF) bergentian 
geronggang terendam berasaskan poliviniliden fluorida (PVDF) dengan sifat pemisahan 
yang meningkat untuk rawatan air sisa berminyak di mana membran ini juga boleh bertindak 
sebagai medium fotopemangkinan. Membran yang disediakan dianalisa dari segi struktur 
morfologi, kekasaran permukaan, kehidrofilikan dan prestasi pemisahan. Pada fasa pertama 
kajian ini, membran gentian geronggang berasaskan PVDF digabung dengan titanium 
dioksida (TiO2) yang mempunyai berat bebanan yang berbeza-beza (0-4% berat) telah 
dihasilkan. Hasil kajian mendapati bahawa membran PVDF dengan 2% berat TiO2 
menunjukkan prestasi dengan kadar fluks air tulen sebanyak 70.48 L/m2.jam dan 
penyingkiran minyak sebanyak 99.7 % apabila diuji dengan larutan sintetik berminyak 
berkepekatan 250 ppm dalam keadaan vakum. Dalam mengkaji kesan kepekatan minyak 
terhadap prestasi membran, didapati fluks air tulen membran menurun tetapi penyingkiran 
minyak meningkat dengan peningkatan kepekatan minyak dari 250 hingga 1000 ppm. Pada 
fasa kedua kajian, membran PVDF berkepekatan 2% berat TiO2 telah digunakan untuk 
mengkaji secara lanjut kesan penambahan polivinilpirolidone(PVP) yang mempunyai berat 
molekul yang berbeza-beza (10, 24, 40, 360 kDa) ke dalam larutan dop membran tersebut 
terhadap prestasi penapisan dan pemulihan fluks air. Keputusan kajian ini menunjukkan 
bahawa membran komposit PVDF-TiO2 dengan penambahan PVP 40kDa dalam larutan dop 
membran memperolehi prestasi yang paling baik dengan kadar fluks air tulen yang 
memberangsangkan (72.2 L/m2.jam) dan penyingkiran minyak yang baik (94 %). Kajian ini 
juga mendapati bahawa membran menunjukkan peningkatan dalam kadar penyingkiran PVP 
dan protein, dan kekuatan mekanikal, penurunan keliangan membran dan lapisan permukaan 
yang semakin licin sejajar dengan peningkatan berat molekul PVP. Dalam mengkaji kesan 
pH terhadap prestasi membran, didapati fluks air tulen membran PVDF-PVP40k meningkat 
dengan peningkatan pH dari 4 hingga 7, namun menunjukkan penurunan apabila pH terus 
meningkat kepada 10. Proses pancuran balik yang mudah boleh mengembalikan kira-kira   
60% fluks asal membran tanpa menjejaskan kecekapan pemisahan minyak. Seterusnya, 
membran tersebut dikaji lebih lanjut dengan mengintegrasikan proses fotopemangkinan. 
Siasatan kesan pelbagai operasi parameter seperti kandungan pemangkin TiO2, kepadatan 
membran modul, kepekatan minyak dalam larutan suapan dan kadar aliran gelembung udara 
(ABFR) terhadap fluks air tulen, penyingkiran minyak dan degradasi jumlah karbon organik 
(TOC) (dalam larutan suapan) telah dijalankan. Purata fluks membran PVDF berkepekatan  
2% berat TiO2 adalah dalam lingkungan 73.04 L/m2.jam apabila diuji dengan larutan 
berminyak yang berkepekatan 250 ppm dengan kepadatan modul sebanyak 35.3 % dan 
ABFR sebanyak 5 L/min. Pada keadaan operasi ini juga, degradasi TOC setinggi 80 % dan 
penyingkiran minyak melebihi 90 % mampu diperolehi. Pada fasa akhir kajian ini, kesan 
masa penyinaran UV ke atas membran (2% berat TiO2) telah dijalankan dengan 
mendedahkan sinaran cahaya UV sehingga 250 jam. Selepas 120 jam, kadar fluks resapan 
didapati meningkat dan beberapa keretakan terbentuk pada permukaan luar membran 
tersebut. Tambahan pula, kekuatan mekanikal dan kestabilan terma membran yang terdedah 
kepada sinaran UV didapati merosot seiring dengan peningkatan masa penyinaran UV. Hal 
ini menunjukkan bahawa membran diperbuat daripada polimer berketahanan cahaya UV 
yang tinggi sangat diperlukan. Keseluruhan hasil kajian ini dapat memberi maklumat yang 
berguna dalam penyelidikan pemisahan dan degradasi air sisa berminyak dan memudahkan 
pembangunan hibrid membran tenggelam bersama reaktor fotopemangkinan (SMPR). 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Oil contaminated wastewater has been recognized as one of the most concerned 

pollution sources. This kind of wastewater comes from variety of sources such as crude 

oil production, oil refinery, petrochemical industry, metal processing, compressor 

condensates, car washing, lubricant and cooling agents. According to statistics, every 

year at least 500 to 1000 million tons of oil is discharged into the water through a 

variety of ways (USEPA, 2015). The oily wastewater is considered as hazardous 

industrial wastewater because it contains toxic substances such as phenols, petroleum 

hydrocarbons, polyaromatic hydrocarbons which are inhibitory to plant and animal 

growth and possess mutagenic and carcinogenic risk to human being. In this regard, 

considerable efforts have been focused on the removal of oil from effluent using many 

kinds of technologies, such as electrocoagulation, adsorption, cyclone, evaporation, 

membrane technologies as well as other chemical and biological treatment methods.  

Nevertheless, most of these conventional methods face energy and 

environmental barriers when dealing with finely emulsified oily wastewater streams 

because oil in these stable emulsions is stabilized by surfactants and its droplet size is 

normally less than 20 µm in diameter (Chakrabarty et al., 2010; Li et al., 2014; Miller 

et al., 2013). Therefore, advanced separation technologies must be employed in order 

to enhance the oil and water separation efficiency and maximize the water reuse. 

Ultrafiltration (UF) membranes with pore sizes between 0.002 and 0.05 µm have been 
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used to remove stable oil particles from wastewater, owing to its high water oil 

separation efficiency and permeability under low operating pressure (Bevis, 1992; 

Chakrabarty et al., 2010; Li et al., 2014; Miller et al., 2013; Ohya et al., 1998; Scott 

et al., 1994; Um et al., 2001). However, the filtration performance was found to vary 

with pore diameter of the membranes, and decreasing oil rejection was observed as the 

pore size was enlarged (Ohya et al., 1998). In addition, typical oil rejection of UF 

ranges from 80% to less than 99%, hence, the UF membrane surface is tended to be 

easily fouled at high oil concentration and additional surface modification procedures 

must be conducted to decrease the fouling tendency (Xu et al., 1999; Ju et al., 2008; 

Li et al., 2006b).  

Submerged membrane photocatalytic reactor (SMPR) is a hybrid system 

coupling photocatalysis and membrane process in a single unit. Photocatalysis allows 

the organic pollutants to be decomposed and mineralized to water (H2O), carbon 

dioxide (CO2) and mineral salts. Additionally, the membrane could serve as a barrier 

for the molecules present in the solution, both initial compounds and products or by-

products formed during the decomposition. However, the traditional SMPR is limited 

by the large amount of residual pollutants and the catalyst retained in the process 

requires additional treatments to eliminate them (Araújo et al., 2006; Painmanakul et 

al., 2013; Seo et al., 2007). 

Therefore, this study aims to enhance the membrane filtration performance and 

provide a better understanding on the effects of different SMPR operating parameters 

such as TiO2 catalyst loadings, feed concentration, air bubble flow rate (ABFR), fiber 

packing density in order to achieve desired separation and degradation performance. 

Although great deals of studies have been reported so far in fundamental and practical 

manners, material development of UF separation process and detailed discussion in 

maximizing SMPR operating condition are still inadequate. In addition, the impacts of 

long term exposure of UV irradiation on polymer membrane is also needed to be 

investigated to facilitate the development of SMPR for wastewater treatment process.  
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1.2 Problem Statements 

The presence of various recalcitrant, toxic and non-biodegradable constituents 

in the oily wastewater has led to the searching of new and innovative methods to 

produce quality-complied and safely dischargeable oily wastewater. UF membrane has 

been widely applied in various separation processes. However, high fouling tendency 

remains one of the most challenging issues in membrane separation processes which 

hinders wider applications of UF in wastewater treatment system. 

Polyvinylidene fluoride (PVDF) is one of the popular membrane materials due 

to its outstanding properties including thermal stability, chemical resistance and 

excellent mechanical strength. Due to the easy dissolution of PVDF in common 

organic solvents such as N,N-dimethylacetamide (DMAc), N,N-dimethylformamide 

(DMF) and N-methyl-2-pyrrolidone (NMP), porous PVDF membranes can be 

produced via a simple phase inversion method. However, its hydrophobic nature, 

which often results in severe membrane fouling and decline of permeability, has been 

a barrier to its application in water treatment (Lang et al., 2007). Many studies have 

attempted to improve the hydrophilicity of PVDF membranes using various techniques, 

including physical blending, chemical grafting, and surface modifications (Lu et al., 

2006). Among these methods, blending with inorganic materials is the simplest 

modification method, yet efficient, to enhance a membrane morphological properties 

as well as its filtration performance (Li et al., 2009).  

Titanium dioxide (TiO2) is the most common anti-fouling material and 

photocatalyst that used to enhance the membrane flux performance and providing high 

degradation rate in mineralizing organic pollutants, as well as to enhance the 

biodegradability of oily wastewater for further downstream treatments (Chong and Jin, 

2012). When the TiO2 surfaces are photon-activated, the reactive hydroxyl radicals 

will react, degrade or even mineralize the organic pollutants without creating a 

secondary pollution (Chong et al., 2010). However, when higher amount of TiO2 is 

presented in the membrane matrix, it will inhibit the photocatalytic activity and 

membrane performance, due to the agglomeration of TiO2 nanoparticles on the 
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membrane surface. Thus, it is necessary to study the impact of the different amount of 

TiO2 nanoparticles in order to optimize the membrane filtration performance.  

Polyvinylpyrrolidone (PVP) is a hydrophilic polymer commonly used in 

membrane fabrication. It possesses excellent pore forming ability, and is highly 

miscible with polymer material as well as soluble in organic solvent (Jung et al., 2004, 

Basri et al., 2011, Xu et al., 1999). However, considering the importance of both 

thermodynamic and kinetic effects during phase inversion process, it is necessary to 

fully understand the impact of different PVP Mw on UF membrane properties and 

filtration performance.  

Despite the excellent oil separation efficiency of UF membranes, there are 

several persistent problems that ravage this system from gaining complete reliance to 

substitute conventional treatment methods, particularly in dealing with those 

recalcitrant and non-biodegradable contaminants. The potential advantages of SMPR 

has been utilized to further improve the limitation of UF membrane, however, an in-

depth understanding of the theory behind the common reactor operational parameters 

and their interactions is inadequate and presents a difficult task for maximizing the 

treatment performance. Other technical challenges are also required to be considered 

such as possible deterioration of the polymeric membrane material when membrane is 

directly exposed to UV light for a long period of time during treatment process. This 

is because the immobilized photocatalysts (in membrane matrix) might absorb UV 

light energy, causing membrane ageing and further altering its surface morphology 

and separation performance. 

Thus, the ultimate goal is to understand the performance of the UF membranes 

and also the oil separation efficiency under low pressure submerged condition. It is 

also essential to understand the correlation between the membrane properties (i.e. 

morphological structure, surface roughness, and hydrophilicity) and system operating 

conditions towards the filtration performance and photodegradation efficiency. In 

addition, present study is to provide greater understanding and highlight underlying 

problems associated with photocatalytic membrane system which will contribute 
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important insight towards the development of effective solution for oily wastewater 

treatment.   

1.3 Objectives of the Study 

Based on the aforementioned problem statements, the objectives of the current 

study are outlined as follows: 

(i) To study the effect of titanium dioxide (TiO2) concentration on the 

properties and performance of PVDF based hollow fiber membrane.  

(ii)  To investigate the effect of molecular weight (Mw) of polyvinylpyrrolidone 

(PVP) on the properties and performance of PVDF based hollow fiber 

membrane.  

(iii)  To evaluate performances of SMPR in oily wastewater process under 

various operating conditions. 

(iv) To evaluate the long term effect of UV irradiation on polymer-based 

membrane in SMPR for oily wastewater treatment. 

1.4 Scopes of the Study 

In order to achieve the listed objectives, the following scopes of studies have 

been identified as follows: 

 

(i) Formulating dope solution of hollow fiber UF membranes using different 

concentrations of TiO2 (0-4 wt.%) at fixed PVDF polymer weight of 18 

wt.%. 
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(ii)  Formulating dope solution of hollow fiber UF membranes using different 

Mw of polyvinylpyrrolidone (PVP) (10, 24, 40 and 360 kDa) at fixed PVDF 

polymer weight (18 wt.%) and TiO2 concentration (2 wt.%). 

 

(iii)  Fabricating hollow fiber UF membranes by dry-wet spinning process at 

fixed spinning conditions.  

 

(iv) Characterizing the surface morphological structure and its properties, 

thermal stability, membrane chemical composition, surface hydrophilicity 

and charge properties  using techniques/methods such as scanning electron 

microscopy (SEM), field emission scanning electron microscopy (FESEM), 

atomic force microscopy (AFM), X-ray diffraction (XRD), thermal 

gravimetric analysis (TGA), attenuated total reflection-fourier transform 

infrared spectroscopy (ATR-FTIR),  contact angle, mechanical strength,  

zeta potential, porosity and viscosity measurement. 

 

(v) Preparing the oily solution by mixing distilled water with commercial 

cutting oil. 

 

(vi) Evaluating performance of the prepared membranes (with various TiO2 

concentrations) in terms of water permeation flux, oil separation efficiency, 

protein rejection (i.e. Bovine serum albumin (BSA), egg albumin (EA) and 

trypsin) and also anti-fouling properties by varying oil concentration from 

250 to 1000 ppm. 

 

(vii)  Setting up submerged membrane photocatalytic reactor (SMPR) with 

single 8W UVA lamp immersed in the middle of the tank. 

 

(viii)  Comparing the photocatalytic degradation of direct photolysis, neat PVDF 

UF membrane and PVDF-TiO2 UF membrane under UV irradiation. 

 

(ix) Evaluating the performance of SMPR in terms of water permeation flux, 

oil separation efficiency and TOC degradation by varying operating 

parameters such as TiO2 catalyst loadings (0-4 wt.%), feed concentration 
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(250, 1,000, 5,000 and 10,000 ppm), air bubble flow rate (ABFR) (0, 1, 3 

and 5 L/min) and module packing density (17.6, 35.3 and 52.9 %). 

 

(x) Investigating the intrinsic properties and performance stability of prepared 

membrane by exposing the membrane to UV light for up to 250 h. 

1.5 Limitation of the Study 

 In order to accomplish the listed objectives and scopes, some constraints of this 

study must be clearly defined and identified as follows: 1) The resulting membrane 

performance and photocatalytic degradation are only applicable for SMPR system with 

that specific dimension, operating condition, targeted pollutants, membrane 

configuration, UV wavelength and its intensity as used in this study. 2) The outcomes 

of the polymer degradation study are only applied to that specifically designed UV 

exposure chamber as used in this study. 

1.6 Rationale and Significance of the Study 

This study aims to optimize the membrane performance and operation of 

SMPR to treat oily wastewater. It is acknowledged that the membrane properties (i.e. 

surface roughness, hydrophilicity and pore structure) are fundamentally responsible 

for membrane performance. In order to improve the membrane properties, blending 

with hydrophilic additives could offer a possible route to produce highly effective 

membranes with high water permeation flux and excellent separation performance. 

Thus, efforts have been made to investigate the impacts of direct blending of TiO2 and 

PVP on UF membrane properties and performance.  
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Additionally, heterogeneous photocatalysis has great potential to be used in 

degrading those hazardous and non-biodegradable compounds from oily wastewater, 

mainly due to generation of hydroxyl radicals that can act as strong oxidizing agent to 

react with the targeted pollutants and eventually mineralize them to innocuous carbon 

dioxide and water. Therefore, efforts have also been dedicated to identify the impact 

of different operating conditions on the separation performance and degradation 

efficiency. To date, no relevant study has been conducted to investigate the 

performance of SMPR in treating oily wastewater with combination of various 

operating parameters.  

Realizing the important roles of heterogeneous photocatalyst integrated with 

membrane process as hybrid process, particularly for wastewater treatment, efforts are 

made to investigate how the long-term exposure of UV irradiation on polymer 

membrane would affect membrane structural morphologies and further its separation 

performance. It is then expected that outcomes from this study would be beneficial to 

further understand the suitability and sustainability of polymeric membrane that is 

widely considered as the host for photocatalyts, providing useful information for the 

research of simultaneous separation and degradation of oily wastewater and facilitate 

the development of hybrid SMPR.  

1.7      Organization of the Thesis 

The thesis consists of 8 chapters. Chapter 1 gives a general and brief 

introduction of the research undertaken. The problem statements of this study are 

defined and the objectives as well as the scopes of study are further elaborated to 

provide the research direction of this study. The significance of the study is also 

provided.  

Chapter 2 provides a general information of the current oil demand and its 

severe impact to the receiving water bodies system. A comparison of the maximum oil 
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discharged standard among different countries is made to give a clear understanding 

of the urgent need to deal with the increasing amount of oily wastewater. A general 

overview of conventional treatment process for oily wastewater treatment is provided 

by comparing each different method with its own pros and cons. After that, detailed 

discussion on UF membranes and its modification methods followed by the UF 

limitation for treating the oily wastewater are elaborated. A brief information on 

SMPR and a summary on recent SMPR studies is provided. After that, a comparison 

of catalyst suspended and immobilized reactor is made followed by the selection 

criteria of photocatalyst and the photocatalysis mechanism. Then, review on the 

impacts of various operating parameters on the performance of SMPR is provided 

followed by some challenges facing in the development of current SMPR are 

highlighted in the end of the chapter. Chapter 3 will focus on the experimental methods 

and characterizations that were used in this study. The analytical methods of 

membrane properties and SMPR performance are also discussed in detail.  

Chapter 4 discusses the characterization and performances of PVDF-based UF 

membrane incorporated with different concentration of TiO2. The fabricated hollow 

fiber membranes were investigated in terms of their morphological structure, surface 

properties and filtration performance. The structural morphologies and surface 

properties of the membranes were characterized by FESEM/SEM, AFM and contact 

angle analyzer. The filtration performance by means of water permeation flux and oil 

rejection are presented and discussed in detail. In addition, detailed discussion on the 

anti-fouling performance of the membranes by varying oil concentration is also 

addressed.  

Chapter 5 discusses on the fabrication, characterization and anti-fouling 

performance of PVDF hollow fiber membranes incorporated with various Mw of PVP. 

The properties of the membranes are characterized by using FESEM/SEM, AFM, 

contact angle and mechanical strength analysis.  Then, the hollow fiber membranes are 

discussed in great detail in terms of water permeation flux, oil rejection and anti-

fouling performance. Additionally, separation performances of protein (BSA, EA and 

trypsin) and PVP are also included. Discussion on the impact of different pH and 

cleaning efficiency are also presented in this chapter. On the other hand, the impacts 
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of various operating parameters, i.e. TiO2 catalyst loadings, feed concentration, ABFR 

and module packing density, on the SMPR filtration and degradation performance are 

elaborated in detail in Chapter 6. 

Chapter 7 presents the long-term effect of UV irradiation on the optimized 

membrane with respect to its structural morphologies and separation performance. The 

impacts of UV irradiation on membrane structural morphologies were characterized 

using FESEM and EDX. In addition, the UV impacts on chemical composition of the 

membrane was investigated using FTIR. The filtration performances of both pristine 

and irradiated membranes were also compared in the end of chapter. Finally, the 

general conclusions of this study and recommendations for future research works in 

this field are drawn in Chapter 8.  
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