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Abstract:
This paper presents work on a fuzzy control design for improving the performance of
tilting trains with local-per vehicle control, i.e. without employing precedence control.
An optimisation procedure using Genetic Algorithms was employed to determine both
the best fuzzy output membership function and best PID controller parameters. The
objective function for the GA procedure was based on a performance index combining
the system response on curved and straight track. Simulation results illustrate the
effectiveness of the scheme compared to the conventional nulling-tilt approach.
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1. INTRODUCTION

High-speed trains effectively reduce journey times
and the way to achieve this is either to develop
new infrastructure that maximizes train speeds
or to use existing infrastructure with tilting train
vehicles. The former solution can prove rather
expensive and usually incorporates issues related
to the surrounding environment. The latter solu-
tion follows a rather straightforward concept, i.e.
by leaning the vehicle body inwards on curved
sections of the track to reduce the lateral accelera-
tion of passengers thereby enabling higher vehicle
speeds.

Early tilt systems used local feedback control
from a lateral accelerometer mounted on the body
of the vehicle. However, it proved difficult to
achieve fast response on curve transitions with-
out suffering a substantial ride quality degrada-
tion on straight track. Current tilting train tech-
nology utilise ’precedence’ tilt control strategies
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(Goodall, 1999). In this scheme a bogie-mounted
accelerometer is used to develop a tilt command
signal by measuring the curving acceleration on a
non-tilting part of the vehicle. However, because
the accelerometer also measures higher frequency
movements associated with lateral track irregu-
larities, it is necessary to filter the signal. This
filtering action (time delay) creates a detrimental
performance on the transition from the straight
track to the curve section. The usual solution is
to use the accelerometer signal from the vehicle in
front to provide “precedence”, carefully designed
so that the delay introduced by the filter com-
pensates for the preview time corresponding to a
vehicle length.

Recent work on local-per-vehicle nulling-type tilt
control using modern control approaches has been
reported (Zolotas, 2002). This paper presents an
extension of the fuzzy-correction control scheme
introduced in (Zamzuri et al., 2005) using a GA-
tuning approach. The overall objective being to
optimise the output membership function and
controller parameters via a performance index
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Fig. 1. End-view of the vehicle model

combining both the curved-track and straight-
track response of the vehicle.

2. VEHICLE MODELING

The mathematical model used for analysis and
control design is based upon the end-view of
a railway vehicle, to incorporate both the lat-
eral and roll degrees of freedom for both the
body and the bogie structures. A pair of air-
springs represents the secondary suspension, while
the primary suspension is modelled via pairs of
parallel spring/damper combinations. The stiff-
ness/damping of an anti-roll bar connected be-
tween the body and the bogie is also included. Ac-
tive tilting is provided by using an ‘active anti-roll
bar’ (Pearson et al., 1998), see Figure 1. Note that
the system is highly complex and characterised
by a significant coupling between the lateral and
roll motion, and the dynamic modes which result
are often referred to as the “sway modes”. Details
on the mathematical description can be found in
(Zolotas and Goodall, 2000).

3. PERFORMANCE ASSESSMENT

Two main design criteria are concerned with tilt-
ing trains: (i) providing a fast response on curved
track (deterministic criterion), (ii) maintain a
good ride quality in response to track irregularities
on straight track (stochastic criterion). The pa-
per employs the performance assessment approach
proposed in (Zolotas et al., 2000).

The assessment of the curve transition is based
upon the idea of “ideal tilting”, i.e. where the
tilt action follows the specified tilt compensation
in an ideal manner according to the maximum
tilt angle and cant deficiency compensation fac-
tor. Deviations from the “ideal tilting” response
quantifies the additional dynamic effects which
are caused by the suspension/controller dynamics
on the transitions to and from the curves, and
provides an objective measure which can be used
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to compare different strategies (see Appendix A).
Note that the calculation of PCT factors is also
included in this stage.

For the straight track case the ‘rule-of-thumb’
which is currently followed by designers is to allow

the degradation of the lateral ride quality of the

tilting train by no more than a specified margin

compared with the non-tilting vehicle, a typical

value being 7.5%. It is essential, for assessing the
tilt controller performance, this comparison to be
made at the higher (tilting) speed.

4. FUZZY CONTROL DESIGN

The control design objective is to provide a fast
response on curved track while minimizing track
irregularities on straight track segments. The con-
trol approach followed in this paper involves the
design of a conventional PID controller to give a
fast curve transition performance and then a fuzzy
correction mechanism which improves stability
(minimise overshoots and prevent critical oscilla-
tions) in the overall system. The PID controller is
driven by the effective cant deficiency signal and
thus guarantees the appropriate tilt compensation
on steady curve (i.e. 60% in this case). Moreover,
the output signal from the PID is fed to the fuzzy
correction block to further accommodate for curve
transition and straight track performance. The
body roll rate is the additional decision making
variable input to the fuzzy correction block. The
control scheme can be seen in Figure 2.

The design of the controller can be divided into
three stages :

(1) conventional PID to give fast response on
curve track

(2) fuzzy correction aimed at minimizing straight
track irregularities and preventing large over-
shoot and oscillations on the curved track

(3) further tuning if necessary (the GA-tuning
approach is discussed in the next section)
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In the first instance the PID can be tuned using
the well known Ziegler-Nichols method (Astrom
and Hagglund, 1995). The parameters are chosen
to give a fast response on curved track subject to
guaranteeing stability.

For the fuzzy correction mechanism, both inputs
shown in Figure 3 consist of three equally distrib-
uted gaussian Membership Functions with 50%
overlap for each signal. Figure 4 shows the fuzzy
correction output u” consisting of trapezoidal and
triangle membership functions. Furthermore, the
Center of Area (COA) defuzzification procedure
with well known max-min inference method was
used.

The linguistic variables for each membership func-
tions represent the condition for each value. For
example, the PID output u’ is represented by the
linguistic variables Neg, Zero and Pos. For the
body roll gyro input θ̇gyro

v , the linguistic variable
are also Neg, Pos and zero, while for the fuzzy
correction output u” , the linguistic variables rep-
resent the tilting direction of the car body as tilt

the car body clockwise maximum represented by
TiltClkwM, tilt car body medium anticlockwise
represented by TiltAclkwm etc. Clockwise and An-
ticlockwise characterize the direction of tilt based
on the curve direction (i.e. inwards and outwards
of the curve respectively). Note that the mem-
bership function ranges were chosen to represent
typical required operating ranges for the current

application of tilt. The development of fuzzy rules
was based on:

• stabilizing the system:
if u’ is changing fast and the θ̇gyro

v is zero

then apply maximum tilt effort u”

• preventing overshoot and oscillation.
if u’ changes and θ̇gyro

v changes then

maintain medium till effort u”

Detail on the rules can be further seen in Table 1,

Table 1. PID-Fuzzy Correction Rule
Base

θ̇
gyro
v /u′ Neg Zero Pos

Neg TiltClkwm TiltClkwm TiltClkwM
zero TiltAclkwM NoChange TiltClkwM
Pos TiltAclkwM TiltAclkwm TiltAclkwm

5. GENETIC ALGORITHMS TUNING
OPTIMISATION

The main difficulty of the above scheme is primar-
ily the choice of of the membership function profile
and also the PID controller parameters. These are
based on the experience of the designer and can
be time-consuming.

Genetic Algorithms is stochastic search tech-
niques drawing inspiration from the principles
of natural evaluation and genetic laws (Holland,
1998) that operate without the knowledge of the
task domain and utilize only the fitness of evalu-
ated individuals. In general, there are three basic
operators of a GA: (i) reproduction (ii) crossover
and (iii) mutation.

In this paper, we utilise eight real-coded GA
variables to optimize the PID parameters (KP ,
KD and KI), and the position and width of the
output fuzzy membership functions (see Figure 2
offline GA). The upper and lower limits on the
parameters are established based on the control
scheme proposed in (Zamzuri et al., 2005). The
initial choice of the parameters and the limits
clearly reduce the computational time associated.

In this study only the output membership func-
tion has been used for the optimisation process.
Figure 4 presents the output membership function
which consists of three triangular membership
functions and two trapezoidal membership func-
tions located at each end of the fuzzy set (from
(Zamzuri et al., 2005)). Figure 5 illustrates the
concept of coding the membership functions. The
genetic algorithm seeks the optimal profile (based
on the position and width of the membership
functions), except for the zero position of MF
NoChange and also the end limits of (TiltClkwM

, TiltAclkwM).
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The overall performance index incorporates two
terms, i.e. both minimizing the curved track re-
sponse error from the ideal case (deterministic)
and minimizing the influence of straight track ir-
regularities (stochastic). In particular the integral
time of absolute error index, (ITAE) (Astrom and
Hagglund, 1995), was employed for both terms
defined as

ITAE =

∫ t

0

t|θerr|(t)dt (1)

where

θerr = θECDaktif
− θECDpassive

(2)

and

θ
(actv)
ECD = effective cant deficiency of active system

(with control)

θ
(passv)
ECD = effective cant deficiency of passive sys-

tem (no control)

The ITAE index limits large initial overshoots
and introduces stricter minimisation as time pro-
gresses, thus it is expected to offer an advantage
in improving the tilt performance. Moreover, the
objective function for the GA tuning procedure is
given by

f = w1

max(t)
∑

t=0

ITAE(det) + w2

max(t)
∑

t=0

ITAE(stoch)

(3)

variables w1 and w2 represent the (complemen-
tary) weighting factors of the deterministic and
stochastic profiles respectively (w1+w2 = 1). Note
the incorporation of both deterministic track and
stochastic track for proper minimisation, and thus
proper tilt action improvement.

6. SIMULATIONS

The Genetic Algorithms procedure was simulated
for 100 generations on a randomly initialized pop-
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Fig. 6. Output membership function without (dot-
ted) and with GA optimisation (solid)
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ulation of 10 solutions. The GA performance use
roulette wheel selection method with probability
crossover and mutation rate of 0.9 and 0.125 re-
spectively, and with weighting factors w1 and w2

of 0.2 and 0.8 respectively.

The system was simulated at a speed of 210 km/h
with 1000 m curved radius and 6o cant angle (the
track profile included 145 m transition length at
each end of the curve). For proper comparison,
the system was simulated using using three con-
trollers (i) PID with Fuzzy Correction mechanism
(manually tuned (Zamzuri et al., 2005)) (ii) The
same controller using GA-tuning and (iii) nulling
PI conventional controller. Figure 6 shows the op-
timal output fuzzy membership function for both
the manually tuned and GA-tuned schemes. Table
2 presents the PID parameter values using the
Ziegler-Nichols tuning method (manual-tuning)
and the GA-tuning method.

Table 2. Manual Ziegler-Nichols vs GA
tuning for the PID controller

PID params Ziegler-Nichols Genetic Alg.

KP 0.19 0.31

KI 1.15 1.60
KD 0.03 0.04

Moreover, Figures 7 and 8 show the time-domain
responses of the tilt system for the controller
schemes considered in the paper.



Table 3. Performance assessment results

Deterministic PI PID-Fuzzy PID-Fuzzy
Conv. Manual with GA

Lat. accel. steady state (%g) n/a 9.5 9.5

R.M.S deviation error (%g) 4.60 3.4 3.08
peak value (%g) 18.20 14.8 14.7

Roll gyro R.M.S jerk level (rad/s) 0.03 0.03 0.03

peak value (rad/s) 0.1 0.12 0.11

Pct peak value level (%g/s) 9.33 9.9 9.72
standing (% of passengers) 67.80 64.0 62.37
seated (% of passengers) 21.0 19.0 18.7

Stochastic

Ride qual. active tilt(%g) 0.406 0.40 0.396
Ride qual. degradation (%) 6.98 5.0 4.3
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7. PERFORMANCES ANALYSIS

This section presents the performance assessment,
based on the procedure discussed in Section 3, of
the discussed fuzzy schemes (PID-Fuzzy manual
and PID-Fuzzy with GA tuning) together with a
baseline conventional PI nulling controller. The
associated results are shown in Table 3. Both
PID-fuzzy correction control schemes provide a
much better performance compared to the conven-
tional controller. Although the PID-Fuzzy with
GA tuning scheme offers a small (but noticeable)
improvement compared to the PID-Fuzzy manual,
it is easier to design for more accurate results.
Note that the straight track ride quality of the
non-tilting vehicle at 210 km/h is 0.381%g.

8. CONCLUSION

The paper reveals the potential of using a PID-
Fuzzy with GA tuning control solution in a
nulling-tilt control framework for improving the
performance of local-per-vehicle tilt. Both fuzzy
control schemes (manual-tuned and GA-tuned)
provided substantial improvement of the tilt per-
formance compared to the conventional nulling
controller. The advantage of using the GA-tuned
solution is the more straightforward setup of the
output membership function and PID controller
parameters via the chosen performance index. Fu-
ture work will investigate on multi-objective Ge-

netic Algorithm (MOGA) solutions for both the
membership functions and controller parameters.
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Appendix A. ASSESSMENT APPROACH
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Fig. A.1. “Ideal Tilting”- Calculation of deviation
of actual from ideal responses for acceleration
and roll velocity

|ÿm − ÿmi
|, the deviation of the actual lateral ac-

celeration ÿm from the ideal lateral acceleration

ÿmi
, in the time interval between 1s before the

start of the curve transition and 3.6s after the end

of the transition.

∣

∣

∣
θ̇m − θ̇mi

∣

∣

∣
, the deviation of the actual absolute

roll velocity θ̈m from the ideal absolute roll velocity

θ̈mi
, in the time interval between 1s before the

start of the curve transition and 3.6s after the end

of the transition.


