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ABSTRACT 

The disastrous consequences of the partial collapse of the Ronan Point 

apartment in 1968 and Northridge earthquake in 1994, exposed the vulnerability of 

steel moment frames subjected to extreme loading. The reports of these two 

catastrophic events revealed the significant role of beam to column connection where 

the damage was mainly formed in this area. In this research, the performance of 

three different steel beam to column connections known as SidePlate, reduced beam 

section (RBS) and a new proposed “saddlebag” connection subjected to cyclic and 

progressive collapse experimentally and numerically were investigated. The main 

objective of this research was to evaluate the adequacy of the new proposed 

connection to resist extreme loading compared to SidePlate and RBS. Seismic 

performance evaluation was focused on the interstory drift angles based on 2010 

AISC seismic provisions. In the other hand, investigation of progressive collapse 

was associated with satisfaction of acceptance criteria by rotational capacities of the 

connections provided in UFC 4-023-03 guideline. The results indicated that the new 

proposed connection was capable of achieving adequate rotational capacity of 0.2 

radians, two times bigger than acceptance criteria, and developing full inelastic 

capacity of the connecting beams during the progressive collapse analysis. In 

addition, an excellent cyclic performance was demonstrated by the proposed 

connection as plastic hinges only appeared in the connected beams at the interstory 

drift angle of 0.06 radians, 1.5 times bigger than acceptance criteria. The seismic 

assessment also revealed that the proposed saddlebag connection possess adequate 

energy dissipation capacity attained by stable hysteretic behaviour into the inelastic 

range. The study also concluded that SidePlate provide adequate performance as it 

develop 0.2 radians of plastic hinge rotation angle and 0.06 radians of interstory drift 

angle  to resist progressive collapse and cyclic loading respectively. However, RBS 

connection showed vulnerable performance to resist seismic and progressive 

collapse loading where tensile stress mainly appear at the groove welding.   
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ABSTRAK 

Akibat bencana, keruntuhan sebahagian daripada apartmen Ronan Point pada tahun 

1968 dan gempa bumi Northridge pada tahun 1994, mendedahkan kelemahan kerangka 

keluli di bawah tindakan bebanan melampau. Laporan kedua-dua peristiwa bencana 

mendedahkan peranan penting sambungan rasuk tiang di mana kerosakan adalah sebahagian 

besarnya terbentuk di kawasan ini. Dalam kajian ini, prestasi tiga sambungan keluli yang 

berbeza bagi rasuk ke tiang dikenali sebagai SidePlate, mengurangkan keratan rasuk 

dikecilkan (reduced beam section-RBS) dan cadangan baru "saddlebag" di bawah tindakan 

keruntuhan kitaran dan progresif secara ujian dan berangka telah disiasat. Objektif utama 

kajian ini adalah untuk menilai kecukupan sambungan baru yang dicadangkan untuk 

menahan beban yang melampau berbanding SidePlate dan RBS. Penilaian prestasi seismik 

telah memberi tumpuan kepada sudut putaran antara tingkat berdasarkan peruntukan garis 

panduan seismic 2010. Di sudut lain, penyiasatan keruntuhan progresif dikaitkan dengan 

kriteria penerimaan yang memuaskan oleh keupayaan putaran sambungan yang 

diperuntukkan dalam garis panduan UFC 4-023-03. Keputusan menunjukkan bahawa 

sambungan baru yang dicadangkan mampu mencapai kapasiti putaran mencukupi 0.2 radian, 

dua kali lebih besar daripada kriteria yang boleh diterima, dan memberikan keupayan tak-

anjal penuh rasuk sambungan di dalam analisis keruntuhan progresif. Di samping itu, 

prestasi kitaran yang sangat baik telah ditunjukkan oleh sambungan “saddlebag” itu di mana 

engsel plastik hanya terjadi dalam rasuk yang tersambung pada sudut putaran 0.06 radian, 

1.5 kali lebih besar daripada kriteria penerimaan. Penilaian seismik juga mendapati bahawa 

sambungan “saddlebag” yang dicadangkan mempunyai keupayaan pelesapan tenaga yang 

mencukupi dicapai oleh kelakunan hysteretic yang stabil. Kajian ini juga merumuskan 

bahawa SidePlate memberikan prestasi yang mencukupi kerana ia memberikan sudut 

putaran ensel plastik 0.2 radian dan 0.06 radian sudut putaran sambungan untuk merintangi 

keruntuhan progresif dan beban  kitaran masing-masing. Walau bagaimanapun, sambungan 

RBS menunjukkan prestasi terendah untuk menanggung beban seismik dan progresif runtuh 

di mana tegasan tegangan terutamanya muncul di kimpalan alur. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

Significant damage imposed on beam-to-column connections within steel 

structures after the Northridge Earthquake in January, 1994 raised great concerns in 

engineering societies[1]. The post-earthquake reports revealed that beam-to-column 

joints went through rotation levels way below the intended yield capacity of their 

framing members which was different from the design philosophy of such frames. 

The steel moment-resisting frame (SMRF) system lost its credibility among 

engineers compared to other structural systems due to its premature and brittle 

modes of failure. The Northridge earthquake of 1994 is known to have cost millions 

of dollars of damage within the building industry. 

The damages and deadly outcomes of progressive collapse events throughout 

history including the 1968 Ronan Point building catastrophe, the in 1995 along with 

the September 11 attacks to the World Trade Center have raised global concerns 

among people[2-4]. Such collapses, along with other unpredicted hazards not taken 

into account during the design phase, indicate the need to secure the inhabitants of 

residential buildings in case of extreme events. Hence, the performance of structures 

in case of progressive collapse has become greatly popular among engineering and 

scientific communities. Progressive collapse is recognized as a chain failure within 

structural members initiated by local damage or failure due to abnormal loading 

conditions which ends up in entire or partial collapse of the building [5]. Such 

abnormal loading conditions might result from unexpected circumstances, with a 
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very low occurrence possibility, high intensity and short time effect like vehicle 

impact, gas explosions and softening members due to fire.  

This study is aimed at the behaviour of beam-to-column connections in case 

of extreme loading conditions. This is due to the fact that beam-to-column 

connections have an important function in resisting such loads within steel 

structures. The objective is to evaluate two beam-to-column connections known as 

SidePlate and reduced beam section “RBS” to resist progressive collapse and cyclic 

loading conditions. Eventually, a new proposed steel beam-to-column connection 

will be recommended and compared against the SidePlate and RBS connections. In 

the proposed connection, two parallel beams are used to transfer the loads along the 

column sides where the beam-to-column connection is provided via a plate that is 

attached to the column flange. The configuration of the new proposed connection is 

in a manner to make sure that the entire substantial connection deformation/energy 

dissipation takes place outside the connection welds, plates and the column. This 

connection hires shop fillet-welded construction and column tree-link beam erection 

procedure to obtain enhanced cost efficiencies and quality control. This new solution 

attempts to avoid brittle fracture for any element in a construction system like plates, 

welds and column. Also, this strategy guarantees that the frame rotational 

performance could avoid reliance on column web weak panel zone participation. To 

sum up, this connection incorporates simplified load paths that are not a function of 

brittle, unreliable and indeterminate behaviour mechanism. 

1.2 Background of the Problem 

The beam-column joints as critical parts of any structural system is believed 

to have control over the extent of catenary action as a result of limited rotation 

capacity and resistance of the joints. Furthermore, based on the inspections 

conducted after the earthquakes, it has been observed that a great deal of brittle 

connection damage was incurred on structures, ranging from negligible cracking to 

fully served columns or beams. This is an indication of the fact that beam-to-column 

connections within steel moment frames play a significant role in resisting extreme 
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loading conditions. Generally, adequate resistance must be provided by these 

connections to develop the full capacity in connected beams. This design philosophy 

is composed of the so-called “strong-column and weak-beam” scenario along with 

the preferred elastic behaviour in beam-to-column connections. It has been widely 

accepted that beam-to-column connections are among one of the weakest members 

in case of extreme loading conditions. This failure mode type in beams from hinges 

is known as the most appropriate condition for maintaining proper global energy-

dissipation with no serious degradation of capacity within the connections. Hence, 

understanding the behaviour of steel beam-to-column connections is the first step 

towards controlling the general performance of a structure.   

Widespread research conducted in countries throughout the world has 

revealed the critical aspects of the behaviour of beam-to-column connections. In 

non-seismic areas, the buildings are mostly designed to bear gravity loads with less 

consideration towards the lateral load effects. Despite the fact that these buildings 

are not situated in seismic regions, long-distance explosions or earthquakes could 

affect these structures. Therefore, this contradiction to seismic design concept would 

make the beam-column joints of these buildings very vulnerable in case of extreme 

loading conditions. 

1.3 Problem Statement 

An old perception within the civil engineering community that states that 

structural steel frames designed against earthquake loads i.e. moment and braced 

frames demonstrate a higher resistance towards progressive collapse[6]. This means 

that seismic detailing and design would be equal to increased performance in case of 

progressive collapse. Since no design guidelines regarding progressive collapse issue 

have been published by any institution, practitioners and scientists tend to support 

the seismic resistant design in occasions where the design objective includes 

progressive collapse prevention [7]. No systematic study so far has been performed 

to highlight the role of seismic detailing and design on structural system behaviour in 

case of progressive collapse. It is noteworthy to mention that an absolutely different 
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kind of demand will be imposed on a structure by seismic forces compared to those 

imposed by progressive collapse. For instance, high moment demands will be 

created within the connection region of many moment frames through seismic 

forces. Yet, as this will be addressed in Chapter 3 in detail, collapse will be 

accompanied by big tensile forces that could have an adverse effect on behaviour of 

seismically designed connections. Nevertheless, it has not been mentioned in the 

literature what kind of beam-to-column connection entails satisfactory robustness to 

allow the plastic rotation development at beam ends along with significant tensile 

forces. Hence, there is no evidence regarding the complete prediction of behaviour 

of seismically designed structures in case of progressive collapse and therefore, it 

remains an open issue for further investigations for engineers before being 

recommended for real projects.  

Another important issue need to take into account on design procedure of 

progressive collapse is the dynamic nature of extreme loading. Although the 

earthquake is considered as dynamic event, extreme loading events like vehicle 

impact, gas explosions and terrorist suicide attacks are listed as strong dynamic 

processes entailing very high strain rates occur in flash of a second.  A different 

response is anticipated for filler metal and welding under high loading rates 

compared to low or static loading conditions that proves the dependence of stress-

strain relationship on strain rates [8]. The following is a summary of the main 

features of this behavior as shown in Figure. 1.1: 

i. The ultimate tensile strength rises slightly with strain rate. 

ii. A much higher increase is demonstrated by the yield strength, in 

comparison. 

iii. The ultimate tensile strain is able to reduce with strain rate. 
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Figure 1-1 Monotonic flow curve for low and high strain rates [9] 

 

Only one steel beam-to-column connection has been introduced so far that 

fulfils the requirements for both progressive collapse and cyclic loading. This 

connection is known as the SidePlate moment connection system [11] that was 

introduced after the disastrous damages of the 1994 Northridge earthquake to secure 

structures against manmade and natural catastrophes i.e. progressive collapse and 

bombings. In SidePlate connection, no direct attachment exists between the beam 

ends and columns; instead, the beams are sandwiched to the column via two resilient 

full-depth SidePlates. Nevertheless, construction methods and design configurations 

used by the SidePlate moment connection technology have their own disadvantages 

in terms of construction. Besides, this connection type entails a field fillet-welded 

step to connect the cover plates and steel beams which could be hard to control. 

Thus, incorporation of the innovative feature named the “saddlebag” connection 

would exclude the drawbacks of the SidePlate along with preserving its advantages.  

1.4 Significant of Study 

Earthquakes are one of the most feared natural phenomena that are relatively 

unexpected and whose impact is sudden due to the almost instantaneous destruction 

that a major earthquake can produce. In the aftermath of the past earthquake, damage 

to steel special moment frame connections spawned concern about the reliability of 

established design and construction procedures. A number of buildings experienced 
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damage in beam-to-column connections that underwent only moderate inelastic 

demands. Failures included fractures of the bottom beam flange-to-column flange 

complete-joint-penetration groove welds, cracks in beam flanges, and cracks through 

the column section. The fractures were a result of the basic connection geometry, 

lack of control of base material properties, the use of weld filler metals with inherent 

low toughness, uncontrolled deposition rates, inadequate quality control and other 

factors. 

Meanwhile, in recent times many structures have been subjected to blast 

loads due to acts of terrorism and steel frames form a major part of these targeted 

structures. Hence the behaviour of structural steel connections subjected to blast 

loads is of interest. For facilities subjected to blast loads, the connections details 

have been shown to play a major part in the response of the structure of such high 

rate dynamic loading. Thus a better understanding of behaviour of structural steel 

connections under blast loads is very important. The guidelines currently used for the 

design of structural steel connections subjected to dynamic loads induced during 

blasts or earthquakes have proved to be inadequate judging from the poor 

performance of steel frames during the bombings in recent times and also during 

seismic events like the 1994 Northridge earthquake. Important design modifications 

were introduced for connections subjected to seismic loads after extensive 

assessments of the observed damage. However these modified design details might 

prove to be insufficient when subjected to high rate dynamic loads such as those 

generated during an explosion. Therefore it is important to assess the behaviour of 

such structures under blast loads. 

The proposed study aims at providing a better understanding of the behaviour 

of steel connections under blast loads through experimental and numerical 

simulation. The adequacy of steel connections that were proposed for resistance 

against seismic loads will be assessed when these connections are subjected to blast 

loads. 
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1.5 Objectives of the Study 

In the light of current world developments, engineers are increasingly being 

required to consider extreme loading event mitigations as a basic design criterion. 

One method of efficiently achieving this goal is to utilize a multi-hazard approach to 

structural system selections. Besides, the suggested technology should address 

virtually for any design application and/or condition, making design and 

implementation an effortless engineering process. The research in this dissertation is 

aimed at evaluation of the performance of a new proposed “Saddlebag” beam to 

column connection to resist seismic and progressive collapse loading conditions. In 

this perspective, the specific objectives of the research are: 

i. To assess the performance of the proposed “Saddlebag” connection 

during progressive collapse. 

ii. To assess the performance of the proposed “Saddlebag” connection 

during the cyclic loading condition. 

iii. To assess the energy absorption capacity of the proposed “Saddlebag” 

connection. 

iv. To compare the seismic and progressive collapse performance of 

proposed “saddlebag” connection with Reduced Beam Section “RBS” 

and SidePlate moment connection system. 

v. To verify the accuracy of the experimental results by comparing the 

values of plastic rotation angle and cyclic response obtained from the 

numerical simulation to those obtained from the experimental study. 
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1.6 Scope of the Study 

The experimental and numerical investigation on the behaviour of steel 

beam-to-column connections in case of column removal scenario and cyclic loading 

was carried out within the scope stated below: 

i. Experimental and numerical progressive collapse assessment was 

performed under column removal scenario conducted by quasi-static 

loading (monotonically increasing force). 

ii. The seismic evaluation under cyclic loading was conducted by a 

hydraulic actuator installed at the tip of the beam and simulated with 

numerical modelling. 

iii. The numerical part of the study was conducted using the 

commercially available software package (Abaqus/Standard) to 

validate the experimental results. 

iv. All the specimens were scaled-down to 1/6th of their real scale and 

material properties were assumed to be the same for all specimens. 

The reason to choose this scale was related to the limited capacity and 

length of reacting frame.    
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1.7 Structure of the Thesis 

Following is a brief description of the 6 chapters comprising this report. 

Chapter 1: Introduction. A general overview of the research program is 

given. The objectives and scope of the current study are highlighted and an 

introduction to other chapters is presented. 

Chapter 2: Literature review. Important topics related to the seismic and 

progressive collapse are reviewed including: past studies on seismic and progressive 

collapse of structures; building code requirements for prevention of progressive 

collapse; structural steels and the process that influence ductile fracture in steels; and 

current strategies tom mitigate the progressive collapse hazards. 

Chapter 3: Design procedure of saddlebag connection subjected to extreme 

loading. Evaluation of saddlebag connection to extreme loading condition were 

investigated. Design procedure of saddlebag connection was addressed through a 

case study example. Design procedure for RBS and SidePlate to address seismic and 

progressive collapse requirements also considered in this chapter. 

Chapter 4: Experimental and numerical simulation. Case studies under 

investigation were developed for seismic and progressive collapse assessment. 

Loading protocol and acceptance criteria for both seismic and progressive collapse 

were explained. Fabrication procedure and modelling setup for each loading protocol 

explained point by point. Finally the numerical simulation was explained in this 

chapter.  

Chapter 5: Results and discussion. This chapter presents the experimental and 

numerical results for the saddlebag connection subjected to cyclic and progressive 

collapse tests conducted in this research. The results grouped into seismic and 

progressive collapse performance for saddlebag connection and compared to the 

SidePlate and RBS beam to column connections. Stiffness degradation and energy 

dissipation capacity of all three connections were also investigated in this chapter. 
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Chapter 6: Conclusion and recommendations. This chapter presents a brief 

summary of the report and key conclusions that can be extracted from the research 

project. It also includes recommendations for the future research for progressive collapse 

studies. 
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