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ABSTRACT 

Reinforced concrete shear wall is an in-plane vertical structural component 

with an ability to resist both the gravity and lateral forces. It has a good behaviour in 

resisting the building structures in earthquakes. In tall buildings layout, shear wall 

configuration generally makes access difficult to the public areas at the base or other 

floor levels such as the car park area and the entrance to the lifts or staircases. This 

can be solved by providing an opening in the shear wall structures. Shear walls that 

is perforated with openings are called coupled walls. The number, location and size 

of openings are directly affect the behaviour of the shear walls and cause to decrease 

the strength and stiffness of the structure. This study proposes adding haunches to 

the corners of rectangular opening as a method of strengthening the shear walls. In 

order to evaluate the behaviour of the shear wall structure in the presence of 

haunches, five small scale models of reinforced concrete shear walls with different 

arrangements of rectangular and octagonal openings were tested under a cyclic static 

horizontal point load at the top of the structure. Furthermore, theoretical method 

based on strain compatibility approach and the Total Moment Concept and 

Nonlinear Finite Element Analysis (NLFEA) with the aid of ABAQUS software 

have been performed to detailed study and verify the experimental outputs. A simple 

analytical equation has been proposed to calculate the maximum displacement of 

shear walls by considering the effective stiffness of cracked sections of shear wall 

components. The results demonstrated that the haunches caused a delay to the 

formation of cracks and increased the capacity of coupling beams and enhanced the 

ultimate strength and stiffness of shear wall structures. The accuracy of suggested 

maximum displacement equation was assessed and concluded that the results were in 

good agreement with experiment. 
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ABSTRAK 

Dinding ricih konkrit bertetulang adalah komponen struktur dalam satah 

tegak bangunan yang berkeupayaan untuk menahan kedua-dua graviti dan beban sisi. 

Ia mempunyai kelakunan struktur yang teguh merintang gempa bumi pada struktur 

bangunan. Dalam susun atur bangunan tinggi, konfigurasi dinding ricih secara 

amnya membuatkan akses yang sukar dikawasan awam di tingkat bawah, pada aras 

lantai dan pintu masuk ke lif atau tangga serta ditempat letak kereta. Keadaan ini 

boleh diselesaikan dengan menyediakan bukaan pada struktur dinding ricih. Dinding 

ricih yang berlubang dengan bukaan dipanggil dinding ganding. Jumlah, lokasi dan 

saiz bukaan secara langsung memberi kesan kepada kekukuhan dinding ricih dan 

menyebabkan pengurangan kekuatan dan kekukuhan struktur. Kajian ini 

mencadangkan penambahbaikan dengan membina sesudut ke bukaan segi empat 

bukaan untuk  memperkukuhkan dinding ricih. Kelakuan struktur dinding bersesudut 

ini dinilai dari kajian lima model konkit bertetulang skala kecil yang mempunyai 

susunan bukaan yang berbeza. Bukaan bersesudut ini dipanggil bukaan segilapan 

dan diuji pada beban tumpu statik datar berkitar pada aras atas struktur. Kaedah teori 

berdasarkan pendekatan keserasian ketegangan dan Konsep Jumlah Momen dan 

Analisis Unsur Terhingga Tak Linear (NLFEA) dengan berbantukan perisian 

ABAQUS juga telah dijalankan secara terperinci dan mengesahkan hasil ujikaji.  

Persamaan analisis mudah telah dicadangkan untuk mengira anjakan maksimum 

dinding ricih dengan mempertimbangkan kekukuhan berkesan dinding ricih yang 

retak. Keputusan kajian menunjukkan bahawa sesudut pada bukaan telah 

melewatkan pembentukan retak dan meningkatkan keupayaan rasuk ganding dan 

meningkatkan kekuatan muktamad dan kekukuhan struktur dinding ricih. Ketepatan 

persamaan anjakan maksimum yang dicadangkan telah dinilai dan memberi 

keputusan yang bersamaan dengan hasil ujikaji. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

Tall buildings have been increasing all around the world in the last decades to 

pool resources and centralize activities. Historically, the development of high-rise 

buildings was related to the need for more living and working space in overcrowded 

cities. High demand, lack of township land and human ambition to create taller 

structures has led to many developers turned to construct high-rise buildings. Tall 

buildings are expected to perform a multiple functions such as office, apartment and 

shopping centres within a single high-rise tower.  

The earliest tall building systems were constructed of bricks, mortar and 

masonry. Nowadays features such as adaptability of function and form, economy, 

fire resistance and the effects of time is making the concrete as an ideal building 

material. The availability of raw materials for concrete and simplicity of cement 

manufacturing are the key factors to select the concrete in construction. Using of 

cast-in-situ reinforced concrete shear walls for lateral load resistant elements in tall 

buildings is widespread in many countries. This form of construction has been used 

since the 1960s in cities for medium to high-rise structures.  

Several reports show a good behaviour of reinforced concrete shear walls in 

past earthquakes. Inspection reports indicate tremendously good seismic 

performance of these buildings, with negligible damage or zero damage at all. 

Nevertheless an earthquake performance of buildings with shear walls in some 
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earthquakes is only associated to poor construction quality such as insufficient wall 

density in the horizontal direction, inadequate amount and/or detailing of wall 

reinforcement, the lack of lateral confinement in the walls, weak condition of soil 

and site effect [1-3]. 

1.2 Background of the Problem 

The lateral and gravity load resisting system of the buildings involves of 

reinforced concrete walls and slabs. Shear wall structures are the main vertical 

structural features with a role of resisting both the gravity and lateral forces. 

Thickness of the wall depends on the number of storey and it varies from 140 mm to 

500 mm. These walls are commonly reinforced continuously throughout the height 

of the building. However, some shear walls are discontinued at the basement level or 

street front to permit for parking spaces or commercial purposes. 

Shear wall structures are typically regular in plan and elevation as shown in 

Figure 1.1. Efficiency of shear walls is described in terms of stiffness. Solid shear 

walls are most efficient so it is highly desirable but openings often are required in 

shear walls for functional necessity (e.g., doors and windows). Though, in some 

buildings, lower levels are used for commercial purposes and the structures are 

considered with bigger plan dimensions at those floors. Generally, shear wall 

buildings are used for residential purposes and may house from 100 to 500 

inhabitants per building. 

Shear walls with openings are called coupled walls. These walls perform as 

cantilevered walls connected by coupling beams (spandrel beams or lintels) for 

bending and shear effects. An important criteria used in the design of concrete shear 

walls are based on providing the required strength and stiffness to avoid or limit the 

damage under frequent earthquakes while ensuring adequate wall deformation 

capacity [4]. When designed in a ductile manner, these beams and connections can 

act as fuses and are used to dissipate seismic energy.  
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(a) 

 
(b) 

 
(c) 

Figure 1.1 a) typical types of shear walls b) typical plan sections of shear walls 

c) a plan view of a building with different type of shear wall section  
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1.3 Problem Statement 

Generally, configuration of shear wall in tall buildings makes access difficult 

to the public lobby areas at floor levels especially ground floor such as the car park 

area and the entrance to lifts or staircases. In view of this, a large opening at the base 

floor is required. This can be achieved by providing openings in the shear wall. On 

the other hand, the location, number, and size of openings affect the overall 

behaviour of the shear wall structure as well as stresses in the wall and cause to 

decrease its stiffness.  

Furthermore, in a common office and residential buildings, typically the 

depth of the coupling beams and connections cannot be too much due to limitation of 

height between the floors and the clear height of floors. Therefore, the coupling 

beams and connections cannot be very stiff and as a result the effect of coupling on 

shear walls may not be adequately predominant. Adding haunches is proposed as a 

useful method to increase the stiffness of the coupling beams in order to increase the 

effect of couplings in the regular wall connections.  

In the past decades large amount of research carried out for shear wall 

structures with different arrangements of rectangular openings. They used theoretical 

and experimental methods to analyse the shear wall structures. Recently some finite 

element software with the ability of defining the nonlinear geometry and material 

have been developed and utilized in analysing the shear wall structures.  

Some methods are suggested to increase the strength of shear wall structures. 

The common methods are based on the strengthening of the coupling beams, using 

diagonal reinforcement and steel beams, confining the concrete at the base, and 

increase the material strength by using high-strength concrete. 

To this date there is no investigation on the effect of adding haunches to the 

corners of rectangular opening in the behaviour of reinforced concrete shear wall 

structures with openings. This research suggests a method to increase the strength 
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and stiffness of shear wall significantly. It also will become economical solution for 

shear walls due to the reduction in material use.  

From architectural point of view, in high-rises, shear wall with octagonal 

openings may have small thickness compared to shear wall with rectangular 

openings. Furthermore, this kind of configuration of opening, allows the architecture 

and designer to install a larger opening with different shape than typical rectangular 

form of opening. 

1.4 Aim of the Study 

The aim of this research is to propose a new strategy to increase the strength 

and stiffness of shear wall with openings by adding haunches to the corners of 

rectangular openings of shear wall elements of tall buildings. 

1.5 Objectives of the Study 

In order to achieve the aim of this research, the following objectives are 

considered: 

1. To determine the structural nonlinear behaviour of reinforced 

concrete shear walls with different arrangements of rectangular and 

octagonal openings. 

2. To compare the load-displacement curve, crack distribution, critical 

areas, mode of failure and ultimate load of shear walls with 

rectangular and octagonal openings. 

3. To propose a simple theoretical method to calculate the maximum 

displacement of shear wall models based on reduced stiffness and 

cracked section. 
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4. To develop a finite element model to determine the behaviour of 

reinforced concrete shear walls with rectangular and octagonal 

openings. 

1.6 Scope of the Study 

The scopes of this research are focusing on experimental analysis of five 

scaled models of reinforced concrete shear walls with different arrangements of 

openings. The following configurations are investigated: 

 Shear wall with single band of rectangular openings (Model 1Rec.) 

 Shear wall with single band of octagonal openings (Model 1Oct.) 

 Shear wall with different arrangements of staggered octagonal openings 

(Model 2Oct, Model 3Oct. and Model 4Oct.) 

The efficiency and accuracy of the proposed models will be verified by 

performing static lateral cyclic loading on the approximately 1:30 scale models in 

the laboratory. The research is involved with ordinary concrete with maximum 

aggregate size of 5 mm. The foundation of the models is restrained against 

displacement and a point load is applied horizontally near the top of the wall through 

stages of incremental loading and unloading, until the ultimate failure of shear wall. 

The effect of building vertical loads is not considered. The only vertical load is the 

self-weight of the shear wall specimens. The evaluation of the experimental 

behaviour of the reinforced concrete shear walls with octagonal openings is mainly 

based on the load versus displacement response and mechanism of failure.  

Nonlinear Finite Element Analysis (NLFEA) with the aid of ABAQUS 

software version 6.12-1 is performed on the models. In order to achieve the research 

objective and to reduce the required time and capacity for the analysis, two-
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dimensional models of shear walls with octagonal openings are generated with 

similar scale of experimental models.  

In addition, theoretical analysis proposed by the previous researchers [5-8] is 

employed to calculate the ultimate strength of shear walls with rectangular and 

octagonal openings and proposed a theoretical equation. This equation can be used to 

estimate the maximum displacement at top of the structure at ultimate load level and 

is also applicable for other level of loading as a stiffness matrix can be formed for 

structural analysis that it is beyond the scope of this research. 

1.7 Significance of the Research 

An obvious and important significance of this study is to increase the 

strength and performance of shear wall structures in earthquake regions in order to 

protect the human life all around the world. Other importance that would be gained 

from this research is as follow: 

1. Present an economical solution for shear wall with openings and 

consequently for structure due to the reduction in material use and 

time. This can be achieved by designing and constructing a larger size 

of octagonal openings instead of rectangular openings with the same 

ultimate load level. 

2. Offer a new configuration of openings in reinforced concrete shear 

wall compared to typical shape of openings architecturally. 

1.8 Structure of the Thesis 

This thesis is organized in eight chapters. The first chapter is a brief 

introduction to the shear wall structure, followed by a statement of the research 

objective and scope. A review on different forms of structural system and relevant 
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research work of reinforced concrete shear wall structures is presented in Chapter 2. 

Chapter 3 is the methodology of experimental program and consists of reinforcing 

details of the specimens, the materials properties, load protocols, and discussion on 

other testing issues. The theoretical analysis method and simulating procedure in 

ABAQUS software are presented through Chapter 4. The result of experimental 

work are presented and discussed in Chapter 5. In Chapter 6 the results of analytical 

method in the format of ultimate capacity of coupling beams and connections, 

behaviour of shear walls, maximum load and displacement of the shear wall models 

are presented and compared with experiments in order to validate the accuracy of 

proposed method. Chapter 7 focuses on the NLFEA results using ABAQUS 

software. The outputs in terms of crack pattern, crushing areas, strain of steel bars, 

and load-displacement curves are discussed and compared with experimental results. 

The main conclusions regarding the effect of using octagonal opening in shear wall 

structures and recommendations drawn from this study are provided in Chapter 8. 
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