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ABSTRACT

Due to the various environmental concerns, a steep hike in fossil fuel price

and an increasing demand of non-renewable fossil fuels consumption, the bio-based

gas-phase dehydration of glycerol to acrolein has attracted much attention recently.

Thus, the gas phase dehydration of glycerol to acrolein over two groups of supported

silicotungstic acid on aluminum oxide (Al2O3) nanoparticle and zirconium dioxide

catalyst is being investigated in this study. The catalysts were characterized by, X-

ray diffraction, Fourier transform infrared spectroscopy, field-emission scanning

electron microscopy and energy dispersive X-ray techniques, temperature

programmed desorption, thermogravimetric analysis, and elemental analyzer. The

characterization results revealed that Al2O3 nanoparticle loading increased thermal

stability, pore diameter, and specific surface area of the synthesized catalysts.

Optimization by response surface methodology revealed the highest acrolein

selectivity of 88.5% at 97% glycerol conversion was obtained over 30HZ-20A

catalyst with turnover frequency being 136 h-1 in 3 h for glycerol feed concentration

of 10.3 wt% and 0.5 g catalyst at 300 ˚C. Coke deposition has no significant effect on

the catalyst activity due to the large catalyst pore diameter (> 27 nm). The prepared

catalysts were highly active and selective for acrolein production even after 40 h

without any needs for gas co-feeding or application of noble metals. In addition, the

kinetic study results demonstrated that glycerol dehydration to acrolein followed

first-order rate with the activation energy (Ea) of 27.5 kJ/mol and frequency factor

(A) of 5.35×105 s-1. Finally, the theoretical and experimental approaches confirmed

no internal mass transfer limitation in glycerol dehydration reaction with catalyst

pellet sizes of dp= 2-4 and 5-7 µm due to effectiveness factor equal to 1 (η=1).
Calculation of the overall effectiveness factor (Ω) also confirmed the absence of

external diffusion in presence of catalysts with pellet size of dp< 7 µm.
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ABSTRAK

Disebabkan oleh pelbagai kebimbangan terhadap alam sekitar, peningkatan

mendadak harga bahan api fosil dan peningkatan permintaan penggunaan bahan api

fosil tidak boleh diperbaharui, penyahhidratan fasa gas gliserol kepada akrolein

berdasarkan bahan bio telah menarik perhatian ramai baru-baru ini. Oleh itu,

penyahhidratan fasa gas gliserol kepada akrolein menggunakan dua kumpulan asid

silikotungstik yang disokong oleh partikel nano aluminum oksida (Al2O3) dan

pemangkin zirkonium dioksida telah dikaji dalam kajian ini. Pemangkin-pemangkin

dicirikan dengan menggunakan teknik pembelauan sinar-X, spektroskopi inframerah

transfromasi Fourier, mikroskop elektron imbasan pemancaran medan dan sebaran

tenaga sinar-X, penyaherapan suhu berprogram, analisis termogravimetrik, dan

penganalisis unsur. Keputusan pencirian menunjukkan bahawa muatan partikel nano

Al2O3 menunjukkan kestabilan terma, diameter liang, dan luas permukaan spesifik

bagi pemangkin yang disintesis. Pengoptimuman oleh kaedah tindak balas

permukaan menunjukkan kepilihan akrolein tertinggi iaitu 88.5% pada penukaran

gliserol 97% telah diperoleh menggunakan pemangkin 30HZ-20A dengan frekuensi

pusingan balik 136 h-1 dalam tempoh 3 jam bagi kepekatan suapan gliserol 10.3 wt%

dan pemangkin 0.5 g pada 300 °C. Pengenapan kok tidak mempunyai kesan

signifikan terhadap aktiviti pemangkin disebabkan oleh diameter liang pemangkin

yang besar (> 27 nm). Pemangkin yang disediakan adalah sangat aktif dan selektif

bagi penghasilan akrolein walaupun setelah 40 jam tanpa sebarang keperluan untuk

penyuapan bersama gas atau aplikasi logam adi. Di samping itu, keputusan kajian

kinetik menunjukkan penyahhidratan gliserol kepada akrolein mengikut kadar tertib

pertama dengan tenaga pengaktifan (Ea) 27.5 kJ/mol dan faktor kekerapan (A)

5.35×105 s-1. Akhir sekali, pendekatan teori dan eksperimen mengesahkan tiada

pengehadan pemindahan jisim dalaman bagi tindak balas penyahhidratan gliserol

dengan saiz pelet pemangkin dp= 2-4 dan 5-7 µm disebabkan oleh faktor

keberkesanan adalah bersamaan dengan 1 (η=1). Pengiraan faktor keberkesanan

keseluruhan (Ω) juga mengesahkan ketiadaan peresapan luaran dalam kehadiran
pemangkin dengan saiz pelet dp< 7 µm.
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CHAPTER 1

INTRODUCTION

1.1 Background of Research

Relentless environmental concerns, steep hike in fossil fuel price, and

increasing demand of non-renewable fossil fuel consumption have led to dramatic

surge in the global search for alternative energy, particularly biodiesel (Sannita et al.,

2012; Meher et al., 2013). Indeed, biodiesel significantly decreases engine emissions

such as sulfur oxides (100%), un-burned hydrocarbons (68%), and polycyclic

aromatic hydrocarbons (80-90%). Many parts of the world have devised plans to

enhance their biodiesel production. Europe and USA, for instance, produced 7.8 and

2.3 million ton biodiesel in 2008, respectively and they planned to double their

production by 2012 (Katryniok et al., 2010a). In addition, it is estimated that the

global biodiesel market will increase significantly to 37 billion gallon by 2016

(Saxena et al., 2009).

The huge amount of biodiesel production worldwide directly affects glycerol

availability, since 10% of the total transesterification process production is glycerol

(Izquierdo et al., 2012). The surplus offers great opportunities for researchers to use

glycerol as a bio-renewable source for value-added chemical production. According

to recent studies, glycerol was acknowledged as one of the top 12 most important

bio-based chemicals in the world (Werpy and Petersen, 2004) and it will become the

major chemical for future bio-refineries. Indeed, the application of glycerol for the
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production of more than 2000 products was reported recently (Garcia et al., 2014).

Many researchers have demonstrated that glycerol, as the byproduct can decrease

biodiesel (B100) production costs by half from 0.63 to 0.35 US $ per liter (Tyson et

al., 2004; Claude, 1999). Nevertheless, glycerol can be produced through different

processes such as (1) fatty acid production, (2) microbial fermentation, (3) soap

manufacture, (4) biodiesel production and (5) propylene oxide synthesize. In

addition, glycerol can be produce by the fermentation of sugars (glucose and

fructose) and industrial conversion of lignocelluloses into ethanol (Gong et al., 2000;

Rogers et al., 2005).

Glycerol purity is the key factor for its industrial application. Traditionally,

industrial biodiesel plants using mineral acids (H2SO4, HCl) and alkali (NaOH,

KOH) catalysts. Thus, the glycerol produced by conventional processes include other

products such as methanol, water, residual catalyst, free fatty acids, un-reacted

mono-, de-, and tri-glycerides, methyl ester and various organic and inorganic

compounds (Matter Organic Non-Glycerol (MONG)) (Yori et al., 2007; Chiu et al.,

2005). As a result, low quality glycerol requires some treatment, including the

neutralization by phosphoric acid (H3PO4) or recycling in order to eliminate the

excess methanol, catalyst and soap. The final glycerol with approximately 80 - 95%

purity will be sold to the industrial refineries at low cost (Tyson et al., 2004; Werpy

and Petersen, 2004). However, the purification processes are costly and

uneconomical. Hence, some industries prefer to burn the low quality glycerol as

waste material and use pure (>98.5%) glycerol instead of purified crude glycerol. As

a result, more than 150,000 - 250,000 metric tons of crude glycerol was tragically

burnt in 2006, wasting one of the most valuable organic raw materials (McCoy,

2006).

The current trend sees majority of researchers focused on the heterogeneous

catalyst application for biodiesel production for higher quality biodiesel and glycerol

production. Bournay et al., (2005) investigated biodiesel production in a continuous

process by the zinc and aluminum (Zn-Al) mixed oxides as heterogeneous solid

catalyst. They reported 98.3% and 98% purity for the final biodiesel and glycerol,
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respectively. As a result, their catalytic process could eliminate all the costly

treatment and purification processes for the direct application of the produced

glycerol in pharmaceutical, cosmetics and food industries (Bournay et al., 2005). The

industrial glycerol utilization for value-added chemicals attracted much attention, not

only due to the surplus of glycerol available, but also because glycerol is bio-

sustainable, non-toxic, and biodegradable. The multi-functional structure and

physico-chemical characteristics of glycerol lead to various applications of glycerol

in different reaction pathways (Chiu et al., 2005; Bournay et al., 2005; Wang et al.,

2001; Chowdury and Fouky, 1993).

The applications of glycerol in our daily life are illustrated in Figure 1.1.

Glycerol is being used for moisturizer, sweetener or food and drinks preservative.

Since glycerol has a non-toxic nature it is also widely used in cosmetics and

toiletries. Moreover, glycerol is also utilized in paper and printing industry for

softening and reducing shrinkage during paper manufacturing. In the tobacco

industry, glycerol is being used to prevent breaking and crumbling during cigarette

processing while it also adds flavor to tobacco.

There are two possible categories for industrial (large scale) application of

glycerol. The first is the utilization of glycerol for obtaining commodities such as

hydrochlorination of glycerol for chlorohydrins, an important intermediate for

epichloridrin production and dehydration of glycerol to acrolein followed by

oxidation step for acrylic acid production.



4

Figure 1.1 Glycerol distributions by application

Glycerol

4
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The other category is the production of oxygenated additives for fuels from

glycerol such as: esters (triacetin) (Melero et al., 2007), ethers (glycerol isobuthyl

ethers) (Behr and Obendorf, 2003; Jaecker-Voirol et al., 2008; Di Serio et al., 2010),

ketals (Crotti et al., 2010), and acetals (Crotti et al., 2010; Silva et al., 2010).  The

etherification of glycerol for production of a mixture of di- and tri-butyl ethers of

glycerin (h-GTBE) is the most promising reaction since it is a new additive for

gasoline and h-GTBE improves the octane and decreases the pour point, cloud point

and diesel viscosity. Figure 1.2 summarizes several materials that can be produced

from glycerol by various processes.

The conventional method for acrolein production is a selective oxidation of

propylene in the presence of complex BiMoOx based catalyst with approximately

85% acrolein selectivity at 95% propylene conversion (Keulks, et al., 1979).

However, petrochemical exhaustion is foreseen in the near future. Therefore, the

production of the most important industrial materials such as acrolein from

sustainable and renewable resource is prevalent recently. The main obstacle for such

an industrial application is the economical matters. According to the recent reports,

the production of acrolein from glycerol can be commercialized if the glycerol price

becomes less than 300 US $/t (Corma et al., 2008). The controlling factor is the

application of the low cost crude glycerol that was only 100 US $/t in 2010 in

contrast with refined glycerol which was 500-550 US $/t in the same year.
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Figure 1.2 Glycerol conversion methods for different value-added chemicals production

6
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Acrolein is highly toxic; therefore, it should be directly converted into other

value added chemicals such as acrylic acid, which is used to produce sodium

polyacrylate. The polyacrylate is a superabsorbent polymer (SAP) used in hygienic

products such as diapers. This material can extremely absorb liquids (more than 500

times of its weight) (Horie et al., 2004). In 2010, it was estimated that SAP has an

annual market of 1.9 million tones. The other acrolein application is in methionine

production from 3-methylthio-propionaldehyde as an intermediate. The methionine

improves animal growth rate and so it is widely used in meat production. In addition,

methionine is a very important amino-acid that cannot be produced by living

organisms. Due to its low production rate (only 500 kt/yr), large scale synthesis is

desirable since the worldwide meat consumption will increase by 3 to 7% in the near

future (Malveda et al., 2006). Figure 1.3 shows the all possible chemicals that can be

produce from acrolein.

Figure 1.3 Possible chemicals that can be produce from acrolein (Liu et al.,

2012)
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1.2 Problem Statement

The partial oxidation of propylene by multi component metal catalysts is the

conventional methods for acrolein production. However, this method suffered from

difficult control of selectivity and yield of products and propylene oxidation is a

primary manufacturing method (Liu et al., 2012). In addition, propylene is non-

renewable and expensive due to its highly dependent to the fossil fuel price. Thus,

glycerol can be used as a bio-based source instead of petroleum-based process to

decrease various environmental concerns and even production costs of acrolein.

The catalytic dehydration of glycerol to acrolein in the gas phase uses various

catalysts such as supported heteropoly acids, zeolites, and mixed metal oxides, but

still there is no catalyst with the long-term stability without severe deactivation and

with the promise of industrialization (Haider et al., 2012). Moreover, the

conventional liquid phase glycerol dehydration to acrolein mostly used homogeneous

catalysts (H2SO4) at supercritical conditions. The application of some heterogeneous

catalysts was reported recently, however, the mixture of powerful super acids and

supercritical conditions is highly corrosive and can seriously damage the reactor

vessels (Ott et al., 2006). Therefore, the application of the supported heteropoly acid

catalysts at ambient pressure in a continuous system is studied in this research to

increase the activity as well as long life stability of catalyst.

Catalyst deactivation as a result of coke formation is the most common

drawback for all the tested catalyst in fixed bed reactors during glycerol dehydration

to acrolein. Gas Co-feeding and application of noble metals are reported as

conventional approaches for slowing down the deactivation rate of catalyst (Haider et

al., 2012). However, recent studies demonstrated that catalyst characteristics (acidity

and pore size) are the main factors which can seriously decrease the effect of coke

formation on catalyst surface (Yun et al., 2014). Thus, the improvements of

physicochemical characteristics of prepared catalysts are evaluated to increase the

long life stability and activity of catalyst in this research.
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The kinetic parameters of glycerol dehydration to acrolein are still unknown

in the majority of cases and all the previous studies performed in the supercritical

conditions (Watanabe et al., 2007; Ott et al., 2006; Qadariyah et al., 2011). The

applications of gas-phase dehydration of glycerol to acrolein in the presence of

heterogeneous catalysts (HPAs, zeolites, and mixed metal oxides) have been reported

by a lot of researchers recently (Yadav et al., 2013; Danov et al., 2015; Dalil et al.,

2015). Therefore, finding the kinetic parameters (reaction rate constant (k), activation

energy (Ea) and frequency factor (A)) at ambient pressure in a continuous system is

the key component for simulation and particularly economical industrialization of a

bio-based acrolein production process.

Fully utilization of catalyst surface in a heterogeneous catalytic reaction

depends on the mass transfer limitations inside the pore structure in the pellets (Baek

et al., 2014). Based on our knowledge, there has been no study on internal and

external mass transfer limitations in gas-phase glycerol dehydration to acrolein in a

continuous system using heterogeneous catalysts. Therefore, dimensionless

parameters known as the Thiele modules ( i), effectiveness factor (η), and overall

effectiveness factor (Ω) determined to investigate the efficiency of catalyst

utilization.

1.3 Research Hypothesis

1) Glycerol can be converted into acrolein during a dehydration process.

Silicotungstic acid (HSiW) has been identified as the potential catalyst for

this process due to its strong acidic sites (Bronsted) and high water tolerance

abilities (Katryniok et al., 2012). Modification of HSiW with selected metal

oxide (ZrO2) may increase the activity of the catalyst, thus hypothetically,

active acid sites that creat an acidic environment in the supported HSiW

catalyst can increase glycerol conversion and acrolein selectivity by tuning

the strong acidic sites to the medium acidic sites.
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2) Supported HSiW on ZrO2 catalyst should have low surface area because

HSiW classified as non-porous materials and ZrO2 also have a very small

surface area. Thus, Al2O3 nanoparticlea are added as the third component to

the catalyst in order to increase the surface area and pore diameter of the final

catalyst. Consequently, the long life stability of catalyst should be increased

due to the presence of large pore diameter and pore volume. Yun et al. (2014)

reported that large pore diameter is the main factor which can significantly

decrease the effect of the coke deposition and catalyst deactivation process.

Thus, the final catalyst does not need any types of regeneration methods such

as hydrogen or oxygen cofeeding or noble metal application to enhance its

long-term stability.

1.4 Research Objectives

1) To synthesize and characterize new supported silicotungstic acid catalysts

using aluminum oxide nanoparticles and zirconium dioxide.

2) To optimize the reaction parameter values by response surface methodology

(RSM).

3) To determine the kinetic parameters in gas phase dehydration of glycerol to

acrolein.

4) To determine the internal and external diffusions inside the pore structures by

theoretical and experimental approaches.

1.5 Research Scopes

The gas phase dehydration of glycerol to acrolein was investigated in a

continuous tubular reactor using supported silicotungstic acid (HSiW) by zirconium
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oxide (ZrO2) and aluminum oxide (Al2O3) nanoparticles which were synthesized by

incipient-wetness impregnation method.

The prepared catalysts are characterized by nitrogen adsorption-desorption

(BET), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR),

Pyridine adsorption (Py-Ir), field-emission scanning electron microscopy and energy

dispersive X-Ray techniques (FESEM-EDX), temperature programmed desorption

(NH3-TPD), thermogravimetric analysis (TGA), Transmission Electron Microscope

(TEM), and elemental analyzer (EA) to evaluate their physicochemical

characteristics.

The prepared samples were evaluated under different reaction temperatures

(270 - 330 ˚C), catalyst loading (0.1 – 0.9 g), glycerol concentration (0.5 – 20 wt%),

2 ml/h flow rate of glycerol in the feed, and 1200 ml/h flow rate of carrier gas (N2).

Furthermmore, the investigation of the reaction route, side products and the

relationships between the properties of the catalysts and their performance in acrolein

production represent the scope of this work. In addition, the response surface

methodology (RSM) is used for the optimization and modeling of processes.

The initial reaction rate constant (k) is determined at four different reaction

temperatures (280, 300, 320, and 340 ˚C) and for each reaction temperature a series

of experiments were performed with various feed flow rates (2, 5, and 10 ml/h). The

kinetic parameters such as activation energy (Ea), and frequency factor (A) are

needed for process simulation and scale-up purposes for further investment on large

scale (industrial) application and commercialization.

The existence of the internal and external diffusions was investigated at

various catalyst pellet size (2 - 45 μm), catalytic bed volume (2 - 10 ml), and gas

mass flow rate (2.55 - 25.2 g/h) by the theoretical and experimental approaches.
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