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ABSTRACT 

 

 

 

 
 Arsenic (As) in groundwater is recognized as a threat to public health worldwide. 

Toxicity of As(III) is greater than As(V) on human health. Most of the arsenic removal 

techniques are effective only in removing As(V) and not As(III). In this study, ten 

locally available low cost adsorbents were screened for their capability to remove 

As(III). The shale sedimentary rock (SSR) and caustic sedimentary rock (CSR) were 

selected based on high As(III) removal. Based on the characterization of adsorbents 

using XRD, FESEM-EDX, BET and TGA analyses, it was found that raw SSR contains 

a mixture of goethite and hematite as its major composition whereas the major 

composition for CSR adsorbent was goethite. Upon calcination at 500oC, the 

composition of both adsorbents was completely changed to hematite. The activation of 

adsorbent was carried out by thermal treatment (250–600°C), acid treatment (0.1–1 M 

H2SO4) and metal impregnation (0.2-1 M of MnC12 and MgCl2) in order to choose the 

best treatment method for As(III) removal. Results showed that only by heating the 

adsorbents at 500°C for 1h, 0.2 g of each adsorbent was capable of reducing the residual 

As(III) concentration below 10 µg/L, for initial concentration from 100 to 700 µg/L and 

optimum  pH ranges between 3 to 9 after 24 h of contact time. The experimental data 

were fitted to kinetic and diffusion models, such as pseudo-first order, pseudo-second 

order, Elovich and intra-particle diffusion models. The pseudo-second order model 

presented the best correlation (R2=0.999) for all adsorbents studied. The good fit of 

equilibrium data with the Langmuir isotherm indicated favourable As(III) sorption 

reaction with SSR-P (0.29 mg/g), SSR-G (0.36 mg/g) and CSR-G (0.65 mg/g), while the 

CSR-P (0.24 mg/g) was better fit with the Freundlich isotherm. The As(III) sorption 

occurred with catalytic oxidation of As(III) to As(V) of the surface oxide of adsorbents 

as evidenced from XPS investigation. Assessment of the breakthrough curve of granular 

SSR through a column study was examined for the effect of contact time based on 

operation parameters of bed depth and flow rate. The breakthrough times (10 µg/L) for 

contact time of 3.167, 4.75 and 6.33 min (10, 20, and 30 cm bed depth, flow rate of 

3mL/min) were found to be 28, 90, and 150 h, with treated water of 5.04, 16.20 and 27 L 

respectively, while for the contact time of 2.85, 3.57 and 4.75 min (flow rates of 3, 4 and 

5 mL/min, bed depth of 15 cm), 27, 21.6 and 15 L water can be treated at a breakthrough 

time of 150, 90 and 50 h respectively. Modeling of breakthrough point was carried out 

using bed depth/service time (BDST) model, Thomas model and Yoon-Nelson model. 

The BDST model gave results that were in very good agreement (R2=0.999) with the 

experimental results. The data obtained from the batch adsorption study was used to train 

back propagation learning algorithm having a 5-11-1 architecture. The model uses a 

tangent sigmoid transfer function and a linear transfer function. The network was found 

to be working satisfactorily since it gave a good degree of correlation (R2=0.919) 

indicating that the model is able to predict the percentage As (III) removal with 

reasonable accuracy. This adsorbent proved to be a promising method to meet the needs 

of rural populations of arsenic contaminated regions since it can effectively reduce 

arsenic concentration from water to environmentally acceptable levels using a simple 

method at affordable cost. 
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ABSTRAK 

 

 

 

 
Kehadiran arsenik (As) dalam air bumi diperakui sebagai satu ancaman terhadap 

kesihatan awam di seluruh dunia. Ketoksikan As(III) adalah lebih tinggi daripada As(V) terhadap 

kesihatan manusia. Kebanyakan daripada teknik-teknik penyingkiran arsenik hanya berkesan 

dalam penyingkiran As(V) dan tidak untuk As(III). Dalam kajian ini, sepuluh bahan penjerap 

berkos rendah yang mudah diperolehi telah disaring keupayaannya untuk penyingkiran As(III). 

Batuan endap syal (SSR) dan batuan endap kaustik (CSR) dipilih berdasarkan penyingkiran As 

(III) yang tinggi. Berdasarkan pencirian bahan penjerap menggunakan analisis XRD, FESEM-

EDX, BET dan TGA, SSR telah disahkan mengandungi goetit dan hematit manakala komposisi 

utama CSR telah disahkan mengandungi goetit. Setelah dipanaskan pada suhu 500oC, komposisi 

kedua-dua bahan penjerap bertukar sepenuhnya kepada hematit. Pengaktifan bahan penjerap 

telah dijalankan melalui olahan haba (250-600oC), rawatan asid (0.1-1 M H2SO4) dan 

penempelan logam (0.2-1 M of MnC12 dan MgCl2) untuk memilih kaedah rawatan terbaik bagi 

penyingkiran As(III). Keputusan kajian menunjukkan bahawa hanya dengan pemanasan bahan 

penjerap pada suhu 500°C selama 1 jam, 0.2 g bahan penjerap berkebolehan mengurangkan 

kandungan As(III) di bawah 10 µg/L, bagi kepekatan awal As(III) dari 100 kepada 700 µg/L dan 

julat pH optimum antara 3 hingga 9 selepas 24 jam masa sentuhan. Data ujikaji dimuatkan untuk 

memperagakan model kinetik dan resapan, seperti pseudo tertib pertama, pseudo tertib kedua, 

Elovich dan resapan intra zarah. Model pseudo tertib kedua menunjukkan korelasi terbaik 

(R2=0.999) terhadap data ujikaji bagi semua bahan penjerap yang digunakan. Padanan 

keseimbangan data yang sesuai diperagakan oleh isoterma Langmuir dengan muatan ekalapis 

yang tinggi menunjukkan tindak balas penyerapan yang baik bagi SSR-P (0.29 mg/g), SSR-G 

(0.36 mg/g) dan CSR-G (0.65 mg/g) manakala CSR-P (0.24 mg/g) menunjukkan padanan yang 

lebih sesuai dengan keseimbangan Freundlich. Penjerapan As(III) berlaku melalui pengoksidaan 

bermangkin As(III) kepada As(V) pada permukaan bahan penjerap melalui bukti dari siasatan 

menggunakan XPS. Penilaian lengkung bulus granul SSR melalui kajian turus telah diperiksa 

bagi kesan masa sentuhan terhadap parameter operasi seperti kedalaman turus dan kadar alir. 

Masa bagi titik perkembangan (10 µg/L) untuk  masa sentuhan 3.167, 4.75 dan 6.33 min 

(kedalaman turus 10, 20 , dan 30 cm, kadar alir 3 mL/min) telah didapati pada 28, 90 , dan 150 

jam, dengan isipadu air yang dirawat adalah sebanyak 5.04, 16.20 dan 27 L, setiap satunya, 

manakala untuk masa sentuhan 4.75, 3.57 dan 2.85 min (kadar alir 3, 4 dan 5 mL/min, panjang 

turus 15 cm), 27, 21.6 dan 15 L air boleh dirawat pada titik masa perkembangan 150, 90 dan 50 

jam. Pemodelan titik perkembangan dijalankan menggunakan model kedalaman turus/masa 

perkhidmatan, model Thomas dan model Yoon Nelson. Model BDST menunjukkan korelasi 

(R2=0.999) yang sangat baik terhadap hasil kajian. Data yang diperolehi dari kajian penjerapan 

kelompok telah digunakan untuk melatih propagasi terbalik pembelajaran algoritma yang 

mengandungi senibina 5-11-1. Model ini menggunakan fungsi pemindahan sigmoid tangen dan 

fungsi pemindahan linear. Rangkaian ini didapati berfungsi secara memuaskan kerana ia 

memberi korelasi yang baik (R2=0.919) menandakan model ini boleh meramal peratus 

penyingkiran As(III) dengan ketepatan yang munasabah. Bahan penjerap ini menunjukkan 

kaedah penyingkiran arsenik yang berkesan untuk memenuhi keperluan populasi luar bandar di 

kawasan yang tercemar dengan arsenik kerana ia boleh mengurangkan arsenik dengan berkesan 

ke tahap yang boleh diterima persekitaran menggunakan cara yang ringkas pada kos yang 

berpatutan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

 Water plays important roles in human activities, the natural environment, and 

social development. One of the most important problems in water use is arsenic 

pollution due to its high toxicity. Arsenic pollution concerns the entire world, 

particularly in countries where water naturally has high arsenic concentrations 

especially for small communities in rural areas around the world, where groundwater 

comprises the main drinking water sources such as India, China, Hungary, Finland, 

Greece, Bangladesh and Cambodia (Urbano et al., 2012; Katsoyiannis, and 

Zouboulis, 2002). 

 

 Arsenic is classified as a Group A and Category 1 human carcinogen by the 

US Environmental Protection Agency and International Association for Research and 

Cancer, respectively and has been identified as a public health issue. Arsenic is a 

semi-metallic element that gradually accumulates, often without visible symptoms, in 

the human body until it reaches a concentration at which it causes chronic toxicity 

(Li et al., 2012). The majority of arsenic species in natural water is a mixture of 

arsenate (As (V)) and arsenite (As(III)), where arsenite is the predominant form 

normally found in groundwater. It has been established that the toxicity of arsenic 

depends on its specific chemical form. Arsenite, the trivalent form is more toxic in 

biological systems than arsenate whereas the toxicity of organo-arsenicals is 

generally lower than that of inorganic arsenic species (Katsoyiannis, and Zouboulis, 

2002). 
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 Gradual intake of arsenic contaminated water has been linked to arsenical 

dermatitis, skin cancer, neurological effects, enlargement of liver, heart disease and 

internal cancer. Studies have reported that arsenic effects are primarily due to 

consumption of arsenic contaminated water at concentrations around 100 µg/L. This 

is because, As(V) can replace phosphate in several biochemical reactions, whereas 

As(III) may react with critical thiols in protein and inhibit their activity (Mohapatra 

et al., 2008).  

 

Recent studies showed that arsenic in drinking water is more harmful to 

human health than expected. Arsenic concentrations greater than 10 mg/L have been 

reported in water supplies throughout the world in places like Bangladesh, West 

Bengal, Vietnam, Argentina, Argentina, Taiwan, Mexico and the Unites States. 

Many countries have considered arsenic in drinking water as an environmental 

priority pollutant and made strict guidelines for arsenic concentration in waste 

disposals and drinking water. Therefore, the World Health Organization (WHO) and 

the US Environment Protection Agency (EPA) have strictly reduced the maximum 

contaminant level recommended in drinking water supply from 50 µg/L to 10 µg/L 

in order to minimize the human risk (Urbano et al., 2012). These legislative 

proposals are based on a revolution of chronic arsenic toxicity to humans as detected 

in relatively large populations receiving potable water with elevated arsenic levels 

over several decades. For some water in Bangladesh, a greater than 99% removal of 

arsenic is required to meet the WHO guidelines. However, many countries, including 

India and Bangladesh, still operate by the previous 50 µg/L standard (Mohapatra et 

al., 2008). 

 

 The presence of arsenic in groundwater is largely as a result of minerals 

dissolving from weathered rocks and soils. Anthropogenic arsenic stems from 

industrial wastes including those from the production of pesticides and fertilizers, 

and from mining, smelting and the agricultural industry. In drinking water, the main 

source of arsenic is arsenic-rich rocks through which water has percolated. Arsenic 

also may be derived from mining or industrial activity in some area. In natural water, 

arsenic is primarily present in inorganic forms and exists in two predominant species, 

arsenate and arsenite. Arsenate is the major species in well-oxygenated water, 

whereas arsenite is the dominant arsenic species in groundwater. Arsenite is much 
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more toxic, more soluble, and more labile than arsenate. Arsenate exists as the 

deprotonated oxyanions of arsenic acid (H2AsO4- and HAsO4
2-) at neutral pH. On the 

other hand, arsenite exists as the neutral species (H3AsO3) (pKa1 = 9.2) at neutral pH 

condition (Mohan and Pittman, 2007). 

 

 To remove excessive arsenic from water, various methods have been 

employed, but most of them suffer from one or more drawbacks, limitations and 

scope of application. Several treatment technologies have been applied in the 

removal of arsenic from waters, such as coagulation/ filtration, ion exchange, lime 

softening, adsorption on iron oxides or activated alumina and reverse osmosis (Jekel, 

1994; Kartinen and Martin, 1995; Zouboulis and Katsoyiannis, 2002). Most of these 

technologies are not efficient enough for the removal of As(III). Therefore, a 

preoxidation step is usually required to transform the trivalent form to pentavalent. 

The oxidation procedure is mainly performed by the addition of chemical reagents, 

such as potassium permanganate, chlorine, ozone, hydrogen peroxide or manganese 

oxides (Jekel, 1994; Driehaus et al., 1995; Kim and Nriangu, 2000). Although these 

reagents are effective in oxidizing trivalent arsenic, they may cause several 

secondary problems arisen mainly by the presence of residuals or from by-products 

formation, inducing also a significant increase to operational costs of the methods. 

Therefore, it is essential that methods that allow those installations to supply 

drinkable water at low cost as well as superior efficiency towards As(III) and simple, 

should be developed. 

 

 

 

 

1.2 Statement of Problem 

 

 

 The presence of dissolved arsenic in groundwater has provoked an 

international concern due to its known toxicity (AWWA, 2001). The decrease of the 

maximum arsenic level in drinking water down to10 µgL−1 imposed the need for 

modification of more than 4000 water supply systems utilised by 20 millions of 

people (EPA, 2002). The presence of arsenic, even at high concentrations is not 

accompanied by any change in tastes, odors and or visible appearance of water. The 

presence of arsenic in drinking water is therefore difficult to detect without complex 
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analytical technique being employed, hence may present a significant hazard to 

community health. Exposure to high levels of acute arsenic poisoning is relatively 

less common, however, long term exposure to even low concentrations of arsenic in 

drinking water also presents a considerable health hazard (Malik et al., 2009). It is 

obvious that boiling of water for purification does not remove arsenic but on the 

contrary, this process increases arsenic concentration by evaporation. This is a fact 

commonly ignored by the potentially affected people (Litter et al., 2010). 

 

 Most treatment technologies, such as adsorption and precipitation, are 

effective in removing As(V) from waters because of the positive charge on the 

surface of the adsorbents. On the other hand, under mildly reducing conditions such 

as in groundwaters, As(III) is the thermodynamically stable form, which is presented 

as the non-ionic form of arsenious acid (H3AsO3) at neutral pH (Cullen and Reimer, 

1989). Thus, As(III) is more difficult to be removed from water by means of 

adsorption and co-precipitation due to the lack of electrostatic attraction (Streat et al., 

2007; Dinesh et al., 2007). Whereas, As-enriched groundwater is generally 

dominated by As(III), up to 96% (Smedley, and Kinniburgh, 2002). 

 

 Therefore, there is a great need for applying efficient methods for arsenic 

removal from drinking water since a large fraction of the regions exposed to high 

arsenic concentrations are developing countries with an important percentage of rural 

population (Robins, 2001). Arsenic removal from waters is not an easy task. 

Economical aspects are perhaps the most important factors for the selection of the 

technology, taking into account the size of the population, incidence of chronic 

illnesses, lack of safe water, poverty conditions, and other socioeconomic variables. 

In most cases, sophisticated, expensive techniques cannot be applied in populations 

with low economical resources. In addition, arsenic treatment units require very 

sensitive monitoring and maintenance arrangements, which falls far beyond the 

economic scope of poor isolated communities (Kemper and Minnatullah, 2005). 

 

 From a technical point of view, the physicochemical and microbiological 

characteristics of the waters and the available materials in the region will determine 

the most convenient technology for removal of arsenic in each site. The selection of 

the method depends greatly on arsenic speciation, chemical composition of the water, 
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reduction potential, hardness, presence of silica, sulfate, phosphate, iron and other 

chemical species, volumes to be treated and degree of sophistication that may be 

applied. Basically, many of the existing processes are acceptable under the correct 

circumstances, but ‘‘the challenge is to determine which process goes with which set 

of circumstances’’ (Kartinen and Martin, 1995). Sometimes, the removal technology 

is suitable, but its application is not possible due to the reluctance of people to accept 

the changes on the organoleptic properties of waters they have been drinking for 

years. Additionally, the volume, handling and final disposal of the generated wastes 

should be considered (Hering et al., 1997; McNeill and Edwards, 1995; Meng et al., 

2000; Sancha, 2003).  

 

 So far, a variety of methods have been developed for this purpose and several 

techniques effectively lower arsenic concentrations in aqueous solution such as 

coagulation/filtration, ion-exchange, membrane technologies, chemical precipitation 

and adsorption. Adsorption is considered to be the one of the most promising 

technologies because the system can be simple to operate and cost effective. 

Unfortunately, most of the mentioned methods present disadvantages that make them 

unsuitable for small-scale applications as required by disperse populations situated in 

rural areas. For example, reverse osmosis membranes have a relatively high cost, and 

the need for electric power and technically-skilled operators represents a 

disadvantage for isolated users. In the case of coagulation/filtration, its domestic 

application has the inconvenience of having to deal with sludge disposal, as well as 

the difficulty of achieving a complete separation of flocs. Ion-exchange and arsenic-

specific adsorption media generally have relatively high costs for rural areas, and 

present availability and logistics constraints that make them mostly unsuitable for 

this type of application (Robins, 2001). This process has the disadvantage of 

releasing harmful chemicals into the environment when the resin is regenerated 

(Lenoble et al., 2005). Finally, membrane processes are commonly employed, but 

this technology is expensive, mainly because of the high energy requirements (EPA, 

2003).  

 

 Although various studies have been undertaken by numerous local 

researchers, proven treatment methods for the specific water conditions have not yet 

been commercialized due to a lack of interest of authorities, local industries and 
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international agencies for financial and technical cooperation. This is because, 

current remediation technologies are expensive, and thus any lowering of the 

standard will put increased economic pressure on rural communities with high levels 

of arsenic in their drinking water (Litter et al., 2010). 

 

 Among the methods used for arsenic removal from water, adsorption has 

proven to be a very efficient method to control the mobility and bioavailability of 

arsenic. The technology of adsorption is based on materials having a high affinity for 

dissolved arsenic. The adsorption of arsenic on solid materials such as goethite, basic 

Yttrium carbonate, red earth, activated carbon, zeolite and others have been 

conducted. The removal of arsenic from water by means of adsorption onto solid 

materials is a well-known process. However, the selection of the most appropriate 

forms of these materials for present application depends mainly on their adsorption 

capacity and commercial availability (Zhao et al., 2011). Activated carbons and a 

number of low-cost adsorbents such as agricultural residue, naturally occurring ores 

and minerals, and peat have been utilized for removal of arsenic (Clifford et al., 

1986). However, major disadvantages of these adsorbents are their low loading 

capacities and their relatively weak interactions with arsenic as evidenced by a low 

arsenic binding constant. The ideal features are strong affinity to target sorbate and 

high surface area with more accessible binding sites (Swapan et al., 2012). 

 

 In order to improve the adsorption of arsenic using activated carbon, a study 

by Huang and Vane (1989), has found that impregnation with different iron salts 

increase ten times the original arsenic adsorption capacity of carbon. Other than that, 

arsenic removal by activated carbon can also be improved by doping with metals 

having a high affinity for arsenate and arsenite such as copper (Cu) and zirconium 

(Zr). However, Cu and Zr can be released in the solution, thus presenting other toxic 

effects. Adsorption of arsenic by iron compounds has been established by several 

authors (Manning and Goldberg, 1997; Manning and Ferdorf, 1998; Wilkie and 

Hering, 1996). Elementary iron (Lackovic and Kikoluidis, 2000; Su and Puls, 2001a; 

Su and Puls, 2001b), granular iron hydroxides, and ferrihydrites (Driehars et al., 

1998; Thirunavukkarasu et al., 2001; Raven et al., 1998; Badruzzamana et al., 2004) 

have been proposed for the removal of arsenic from water.  
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 Most of these technologies are not efficient enough for the removal of 

As(III). Therefore, a pre-oxidation step is usually required to transform the trivalent 

form to pentavalent followed by coprecipitation/adsorption of the As(V) formed onto 

the metal oxyhydroxides. The oxidation procedure is mainly performed by the 

addition of chemical reagents, such as potassium permanganate, chlorine, ozone, 

hydrogen peroxide or manganese oxides (Jekel, 1994; Driehaus et al. 1995; Kim and 

Nriangu, 2000). Although these reagents are effective in oxidizing trivalent arsenic, 

they may cause several secondary problems arising mainly by the presence of 

residuals or from by-products formation, inducing also a significant increase to 

operational costs of the methods (Zouboulis and Katsoyiannis, 2005). However, 

manganese dioxide was emphasized as an effective oxidizing agent of As(III) and its 

oxidation potential is relatively low and fit for specific oxidation of As(III). 

Manganese dioxide can also be used as adsorbent for removal of arsenic, but its 

adsorption is low (Lenoble et al., 2004) and this limits its application. 

 

 To improve the removal efficiency, many composite adsorbents containing 

MnO2 have been synthesized. Two natural Fe–Mn-mineral materials (Chakravarty et 

al., 2002; Deschamps et al., 2005) whose main components are Fe2O3 and MnO2, 

have been investigated for As(III) and As(V) removal from water and both of them 

are more effective for As(III) removal than that of As(V). However, their adsorption 

capacities for both As(III) and As(V) are very low. Besides, synthetic Fe oxide-

coated MnO2 (Oscarson et al.,1983) has also been studied for the oxidation and 

sorption of As(III), but it’s As(III) adsorption capacity was lower than that of pure Fe 

oxide since MnO2 was coated by Fe oxide and could hardly oxidize As(III). A study 

by Wu et al., (2011) demonstrated the use of  Fe–Mn binary composite that 

combines the oxidation property of manganese dioxide and the adsorption features to 

As(V) of iron oxides, able to oxidize As(III) and have good adsorption capacity for 

As(V) simultaneously. However, this method needs to combine with a coagulation 

process (poly-aluminium chloride) to facilitate the arsenic removal in order to meet 

the guideline limit of 10µg/L. 

 

 These absorbents show a certain capacity to adsorb arsenic, but they still 

contain many inherent limitations such as the adsorbents have a limited adsorption 

capacity and leaking of metal impregnated for adsorbing arsenic species. Other than 
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that, these methods have to adjust pH and some operation problems as well as 

complexity of adsorbent preparation. The problems in term of either efficiency or in 

cost and so on make it less attractive as a chosen method for removing of arsenic 

from aqueous medium. In order to meet the needs of people of arsenic contaminated 

regions, alternative techniques are required that can effectively reduce arsenic 

concentrations from water to environmentally acceptable levels at affordable cost 

(Zhao et al., 2009). 

 

 

 

 

1.3 Objectives of Study 

 

 

The objectives of this study are as follows: 

 

1. To screen the potential low cost materials for As (III) adsorption and to study 

the effect of adsorbent treatment method on As (III) removal. 

2. To characterize the selected adsorbents using instrumental analysis such as 

field emission scanning electron microscopy combined with electron 

dispersive X-ray spectroscopy (FESEM-EDX), Brunauer-Elmer-Teller (BET) 

analysis, X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy 

(XPS) and thermogravimetric analysis (TGA). 

3. To study the effect of particle size on adsorption parameter, adsorption 

isotherm and kinetic studies for As (III) removal as well as to investigate the 

mechanisms responsible for As (III) removal using the adsorbents. 

4. To evaluate the removal of As (III) from water using a column study for the 

effect of contact time based on flow rate and bed depth as well as modeling 

study. 

5. To predict the As (III) removal using a multilayer feed forward back 

propagation neural network (BP-ANN) model in order to reduce the cost for 

experimental runs. 
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1.4 Scope of Study 

 

 

 The potential low cost materials used in this study were naturally occurring 

rocks (shale sedimentary rock (SSR), caustic sedimentary rock (CSR), sedimentary 

rock from cambodia (CR) and river sand (RS)) ceramic factory by-products 

(porcelain glaze (PG), full body porcelain black (FBPB), ceramic glaze (CG), full 

body porcelain white (FBPW) and clay (C)) and the common commercially available 

water purifier, activated carbon (AC), have been used for As(III) adsorption. For the 

study on the effect of adsorbent activation method on As(III) removal, three methods 

of activation were used namely heat treatment, acid treatment and impregnation of 

adsorbent using metal ions such as Mn and Mg. Then, the adsorbents that were 

prepared using the best activation method was characterized using instrumental 

analysis (electron dispersive X-ray spectroscopy (FESEM-EDX), Brunauer-Elmer-

Teller (BET) analysis, X-ray diffraction (XRD) analysis, X-ray photoelectron 

spectroscopy (XPS) and thermogravimetric analysis (TGA)) in order to define their 

morphology, surface structure and properties of modified adsorbents. The  study on 

the effect of particle size on adsorption parameter, adsorption isotherm and kinetic 

studies for As(III) removal were carried out using adsorbents with particle sizes of 

75-106 µm and 0.5-1.18 mm. The mechanisms responsible for As (III) removal using 

modified natural adsorbents were investigated using instrumental analysis and 

adsorption parameters. Evaluation of adsorbent for the removal of As (III) from 

water using a column study was carried for the effect of contact time based on some 

parameters such as flow rate and bed depth. Lastly, the prediction of As (III) removal 

using a multilayer feed forward back propagation neural network (BP-ANN) model 

was carried out in order to reduce the cost for experimental run. 

 

 

 

 

1.5 Significance of Study 

 

 

 Many technologies exist for removing arsenic from aqueous medium, but 

most of them suffer from one or more drawbacks, limitations and scope of 

application (USEPA, 2000). Adsorption and coagulation are two of the cheapest 

arsenic removal techniques, employed to date. Although coagulation with iron and 
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aluminium salts is more effective, the requirement of a skilled operator limits its 

application in small community and household levels. Moreover, in some 

coagulation treatments, a large amount of salt must be added which introduces 

contaminants such as sulfate ions into the water that requires subsequent treatment. 

In addition, the cost of the chemical reagents used in such treatments can limit their 

commercial applicability. In comparison, solid adsorbents are easy to handle and are 

appropriate for use in the countryside of India and Bangladesh where the largest 

number of people affected by arsenic contamination live. Recently, the use of solid 

adsorbents particularly natural minerals has shown some promising results in the 

removal of arsenic from contaminated groundwater (Mohapatra et al., 2008). 

 

 Different adsorbents have been tried for arsenic removal, and there is a wide 

variation in their effectiveness, as well as cost. The latter becomes an important 

factor in determining the treatment technique in several developing countries like 

Bangladesh and India. The use of natural materials offers an advantage of abundance 

and cost. In addition, such materials are ideal for one time use requiring no 

regeneration. This is an important convenience, especially in areas which are remote, 

have no regeneration facility, or for communities where drinking water is usually 

handled by women and children who are not trained enough to handle regeneration. 

The use of natural materials such as mineral, ores and agricultural residue containing 

oxide and hydroxide shows an excellent method for arsenic mitigation (Mohapatra et 

al., 2007).  

 

 Goethite,  α-FeOOH, one of the iron oxide minerals that are widely 

distributed, occurs in rocks, soils and throughout the global ecosystem, and has the 

diaspore structure which is based on hexagonal close packing. Generally, goethite is 

an oxidation, decomposition, weathering and hydrolyzation product of pyrite, 

siderite, magnetite and Fe-containing silicates (Cornell and Schwertmann, 2003). 

Although goethite displays a range of shapes and sizes, the most basic morphology is 

acicular with the length varying from tens of nanometer to several microns. Goethite 

is one of the most abundant and thermodynamically-stable Fe-containing crystalline 

compounds; therefore, goethite is the first oxide to form or is the end member of 

many transformations (Cornell and Schwertmann, 2003; Liu et al., 2012; 
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Schwertmann, 1971) in which the transformation of goethite to hematite generally 

occurs after heating between 180 and 300oC (Ruan et al., 2001; Prasad et al., 2006). 

 

 Without any modification, natural iron oxide minerals have a limited 

adsorption capacity due to their small surface area. So, it is important to modify the 

minerals to increase the specific surface areas and thus improve adsorption 

capacities. There are various methods for the preparation of microporous minerals 

such as mechanical, thermal and chemical treatments as well as multiple adjustments. 

The most effective method is thermal treatment, including thermal modification and 

thermal chemical synthesis (Jia et al., 2012). 

 

 Thermal modification for preparing microporous minerals has attracted great 

attention since the 1970s. In thermal treatment of minerals, some reaction occurs 

such as dehydration, dehydroxylation and decomposition of minerals resulting in the 

modification of structures and characteristics (Gan et al., 2009). The improvements 

of microporous minerals after thermal treatment occur on specific surface area, pore 

volume, and adsorption capacity (Ozacar, 2003). Thermal treatment has been found 

to be good for preparing homogeneous microporous minerals (Meng and Park, 

2010). Thus, the porous hematite prepared from thermal modification of goethite 

used in this study will provide high As(III) adsorption capacity, low cost and ease in 

operation. This adsorbent will be beneficial for people in rural areas since the 

preparation of the adsorbent is very simple and can be done by inexperienced 

persons. The adsorbents prepared do not involve any chemical and no pH adjustment 

is required for treated water. 

 

 Villagers can prepare their own adsorbent for groundwater filtration by 

collecting natural ore mineral-goethite-rich (natural goethite-yellow colour) which is 

abundant and easily available throughout the globe. To reduce the size, natural iron 

ore can be crushed using a hammer or any hard material. The crushed natural iron 

ores are then washed to remove unwanted particles before it was put in a metal 

container such as a pot for heating process. This can be done for one to two hours 

with mild heating using firewood. The temperature for the heating process not 

necessarily be measured or controlled since thermal decomposition of hydrous and 

hydroxyl group can occur at temperatures as low as 180oC. Almost no cost is 
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involved in the preparation of this adsorbent and the preparation is very simple. With 

that, poor peoples in rural areas will have a chance to consume As-free water at 

affordable cost. 

 

 

 

 

1.6 Thesis Outline 

  

 

 This thesis is divided into seven chapters. The first chapter is the introduction 

of the study which comprise of the background of study, statement of problem, 

objectives, scope and significance of study as well as the framework of the thesis. In 

this chapter, the problem which led to the research being conducted, the aim of the 

study and the importance of this research was clearly stated.  

 

 Chapter 2 deals with the Literature Review. In this chapter the overview of 

arsenic contamination in groundwater, sources and arsenic chemistry as well as the 

toxicity of arsenic to human health were thoroughly reviewed in order to provide an 

insight about the crucial problem of arsenic around the world. Other than that, the 

technology used for arsenic removal from water were discussed but the focus is more 

on the adsorption technique using low cost adsorbent materials such agricultural 

wastes, industrial by-products and natural materials. The use of small scale and low 

cost method for As(III) removal in rural area was evaluated and the use of artificial 

neural network (ANN) for modeling of arsenic removal study in order to reduce the 

cost for experimental run was discussed.  

  

 Chapter 3 covers the screening of low cost adsorbents, treatment and 

characterization of adsorbents for As (III) removal. Screening of adsorbents is 

necessary in order to select the most potential and low cost material to be applied in 

the study. The activation (heat, acid and impregnation/metal treatment) of selected 

adsorbents were discussed in order to overcome the problem regarding low porosity 

as well as low specific surface area of natural adsorbent. To facilitate the 

understanding of the adsorption process for the selected adsorbents, characterization 

of adsorbents using instrumental analysis was explored thoroughly in this section. 
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 Chapter 4 deals with the experimental performance, mathematical models and 

mechanism of As (III) adsorption on calcined SSR and CSR. In this chapter, the 

principles of adsorption, both the physics and chemistry perspectives are presented in 

a broad brush approach to the mathematical solutions of complex adsorption 

isotherm. Mathematical modeling of adsorption is useful mostly for providing a 

conceptual appreciation of the mechanism and a good knowledge of the adsorption 

theory is required in order to optimize the process. 

  

 Chapter 5 discussed about the As (III) removal from water in a fixed bed 

using SSR adsorbents: covering both experimental and modeling studies. In this 

chapter, the effect of contact time based on operation parameters such as bed depth 

and flow rate was explained based on the breakthrough time. Several model fitting 

such as the bed depth service time, Thomas and Yoon-Nelson models were 

explained.  

 

 In Chapter 6, the use of artificial neural network modeling of As (III) removal 

from water by SSR and CSR were discussed. This modeling is an alternative tool to 

evaluate the adsorption removal without doing a lot of experiments. In other words, 

the missing data can be incorporated into the model for the model to predict the 

desired output. The last chapter i.e Chapter 7, covers the conclusions and 

recommendations for future work. The research framework for this present study is 

shown in Figure 1.1. 
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Figure 1.1: Research framework. 
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