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ABSTRACT

Novel and promising forward osmosis (FO) is a membrane-based separation 
with significant potentials for the desalination process. While this technology offers 
various benefits, overcoming its internal concentration polarization (ICP) and 
membrane fouling in polyamide (PA) skin layer remain as a challenge. In this study, 
three types of novel thin film nanocomposite (TFN) membranes were synthesized by 
either coating a typical PA film over the surface of substrate made of polysulfone- 
halloysite nanotubes (HNTs) or embedding HNTs and titanium dioxide (TiC>2)/HNTs 
nanocomposites into PA thin layer formed over a typical polysulfone (PSF) 
substrate. These approaches aim to reduce membrane fouling and/or ICP during FO 
applications. In the first stage o f this study, both hydrophilicity and porosity of the 
substrate were increased using FINTs. The results obtained from filtration 
experiments showed that the TFN membrane prepared with incorporation of 0.5 wt% 
HNTs (TFN 0.5) demonstrated the most satisfactory results by exhibiting high water 
permeability and low reverse solute flux in both FO and pressure retarded osmosis 
(PRO) configurations. This improvement can be ascribed to the fact that the 
structural parameter (S value) of TFN membrane is much lower compared to that of 
control thin film composite (TFC) membrane (0.37 vs 0.95 mm), leading to reduced 
ICP effect. In the second stage o f this study, both hydrophilicity and surface 
roughness of TFN membranes increased with incorporation of HNTs into PA layer. 
In the FO mode, the fabricated TFN FO membrane in this study exhibited 
significantly higher fouling resistance compared to the control TFC membrane. As 
an indication to reversibility of fouling in TFN FO membrane, it was also found that 
more than 96% permeate flux could be recovered after a simple water rinsing 
process. In the third stage of this study, TiOi/HNTs nanocomposites synthesized via 
one-step solvothermal method were used as nanofillers in the preparation of TFN 
membranes for the FO application. With respect to separation performance, it was 
discovered that the TFN membrane incorporated with 0.05% (w/v) T^/FTN Ts (TFN 
0.05) exhibited the best performance due to its high water permeability and low 
reverse solute flux when tested using 10 mM sodium chloride (NaCl) feed solution 
and 2.0 M NaCl draw solution under two different membrane configurations. 
Compared to the control membrane (without TiOj/HNTs incorporation), the 
fabricated TFN 0.05 membrane could offer up to 90% higher water flux and 
exhibited significantly better antifouling affinity against bovine serum albumin 
(BSA). The results revealed that fouling in the TFN 0.05 membrane was completely 
reversible. As a conclusion, it was found that modifying the PA skin layer of 
composite membrane using TiOi/HNTs as nanofillers could give the most promising 
results, improving not only membrane permeability and selectivity but also its anti­
fouling property.



ABSTRAK

Proses osmosis hadapan (FO) yang novel adalah satu teknik pemisahan 
berasaskan membran yang berpotensi besar untuk proses penyahgaraman. Walaupun 
teknologi ini menawarkan pelbagai kelebihan, cabaran utama yang perlu diatasi 
adalah polarisasi kepekatan dalaman (ICP) dan kotoran membran pada lapisan aktif 
poliamida (PA). Dalam kajian ini, tiga jenis novel membran filem nanokomposit 
nipis (TFN) telah disintesis sama ada melalui kaedah penyalutan filem PA di atas 
permukaan substrat yang diperbuat daripada polisulfona- tiub nano haloisit (HNTs) 
atau menggabungkan HNTs dan titanium dioksida (Ti02)/HNTs nanokomposit 
dengan lapisan nipis PA yang terbentuk di atas substrat polisulfona (PSF). 
Pendekatan ini bertujuan untuk mengurangkan kotoran membran dan/atau ICP 
semasa proses FO. Pada peringkat pertama kajian, kehidrofilikan dan keliangan 
substrat PSF telah meningkat selepas penambahan HNTs. Keputusan yang diperoleh 
daripada kajian turasan telah mendapati membran TFN yang diperbuat daripada
0.5% berat HNTs dalam substrat (TFN 0.5) menunjukkan fluks air yang tinggi dan 
fluks bahan terlarut yang rendah dalam konfigurasi FO dan konfigurasi tekanan 
osmosis terbantut (PRO). Peningkatan ini disebabkan oleh parameter struktur (nilai 
S) untuk membran TFN yang jauh lebih rendah berbanding dengan membran 
kawalan filem komposit nipis (TFC) (0.37 vs 0.95 mm), yang mengakibatkan kepada 
pengurangan kesan ICP. Pada peringkat kedua kajian, kehidrofilikan dan kekasaran 
permukaan membran TFN meningkat dengan penambahan HNTs ke dalam lapisan 
PA. Pada mod FO, membran TFN FO mempunyai rintangan kotoran yang lebih 
tinggi berbanding dengan membran kawalan TFC. Bagi membuktikan keboleh- 
balikan kotoran dalam membran TFN FO, hasil kajian menunjukkan bahawa lebih 
daripada 96% fluks boleh diperoleh semula selepas proses pembilasan air yang 
mudah. Pada peringkat ketiga kajian, nanokomposit Ti02/HNTs yang disintesis 
melalui kaedah solvoterma telah digunakan sebagai pengisi-nano dalam penyediaan 
membran TFN untuk proses FO. Hasil kajian menunjukkan bahawa membran TFN 
yang digabungkan dengan 0.05% (berat/isipadu) TiOj/HNTs (TFN 0.05) mempunyai 
prestasi yang terbaik dengan kebolehtelapan air yang tinggi dan fluks bahan larut 
balikan yang rendah apabila diuji menggunakan 10 mM natrium klorida (NaCl) 
larutan suapan dan 2.0 M NaCl larutan luaran pada dua konfigurasi membran yang 
berbeza. Berbanding dengan membran kawalan (tanpa Ti02/HNTs), membran TFN
0.05 mampu menghasilkan fluks air 90% lebih tinggi dan sifat anti-kotoran terhadap 
serum bovin albumin (BSA) yang jauh lebih baik. Hasil kajian juga menunjukkan 
bahawa kotoran pada membran TFN 0.05 boleh berbalik. Kesimpulannya, 
pengubahsuaian lapisan aktif PA membran komposit menggunakan Ti02/HNTs 
sebagai pengisinano boleh meningkatkan bukan sahaja kebolehtelapan dan 
kememilihan membran tetapi juga sifat anti-kotorannya.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Scarcity of fresh water caused by social, economic, and technological 

developments has become a major concern for many countries. Increment in 

population and development of countries have resulted in pollution of drinking water 

sources like rivers, lakes and groundwater. This phenomena cause increase in salinity 

of the water resources or diminishment of some safe resources. Emerging water 

shortage problems may push the world toward a very disastrous situation. As a result, 

water related problems are currently very important issues all over the world and two 

main solutions are proposed to solve this problem. They are water recovery and 

water desalination. However, it should be emphasized here that quality of recovered 

water is not high enough to be used in human water drinking section. In fact, this 

kind of water is suitable for applications like irrigation, plant cooling water and 

groundwater regeneration. On the other hand, water desalination technique is a 

trustable method to produce high quality fresh water for human drinking. Also, it is 

necessary to remind that brackish and seawater are infinite resources which can be 

used in desalination processes (Greenlee et ul., 2009).

In the desalination process, the saline water is cleaned from salts and non-ionic 

minerals in such extent that allows it to be used in customary drinking. Sharp



increase in population of the world and the subsequent need for supplying fresh 

water have motivated researchers to utilize new methods for providing clean water. 

Various methods are applied to clean inland brackish water as well as seawater. The 

total dissolved solids (TDS) in the former and latter are 10,000 and 35,000 mg/L, 

respectively. Current desalination methods are based on membrane or thermal 

desalination. The most important thermal methods include multi-effect distillation 

(MED), multistage flash (MSF) and vapour condensation (VC) whereas reverse 

osmosis (RO) is the most used membrane method. In thermal distillation method, 

after boiling the polluted water at low pressure, the resultant vapour is collected and 

distilled to gain fresh water. In RO processes, however, the water molecules are 

forced to diffuse into a membrane by applied hydraulic pressure while passage of 

salts molecules is not possible. From economical point of view, a high amount of 

energy is needed to evaporate water from salty solution and this makes the thermal 

methods more expensive in comparison with RO ones which use only electricity. 

Membrane methods are associated with different advantages including low energy 

consumption, suppression of chemical usages and smaller operation space. Due to 

these benefits, membrane methods are replacing conventional thermal techniques in 

water purification industry (Greenlee et al., 2009).

In 1970 when RO process was used widely in water purification industry, a 

new method named forward osmosis (FO) appeared for salt removal over the last 

decade (Zeng et al., 2013; Zhang et al., 2011). A brief literature review shows that 

the concept of FO was first developed theoretically by some researchers rather than 

being found experimentally. FO is a process in which osmotic pressure gradient 

forces water molecules to pass through a semi permeable membrane from the feed 

solution side toward draw solution side. The former solution has low osmotic 

pressure while the latter has high osmotic pressure (McGinnis and Elimelech, 2007). 

In the recent years, FO membranes are widely used in different areas like wastewater 

treatment, seawater/brackish desalination, food processing and power generation 

(McCutcheon et al., 2005). The most important advantages which resulted in 

flourishing of FO are low energy consumption, low fouling and high water recovery. 

Other pressure-driven membrane processes like RO, nanofiltration (NF) and 

ultrafiltration (UF) do not benefit from such advantages. Most of these pros are



3

originated from low hydraulic pressure demand of FO membranes (McGinnis and 

Elimelech, 2007).

Recently, thin film composite (TFC) FO membranes are introduced in two 

different forms including flat sheet and hollow fiber. Elimelech’s group was the first 

research team who synthesized TFC FO membrane by the use of interfacial 

polymerization (IP) of phenylenediamine (MPD) and trimesoyl chloride (TMC). The 

polymerization was carried out on the surface of porous polysulfone (PSF) support 

layer cast on a polyester nonwoven fabric (Qiu et al., 2011). Their investigations 

showed that substrate greatly affects TFC FO membrane performance (Tiraferri et 

al., 201 lb). The research in this area was continued by Wang et al. (2010b) where 

they fabricated hollow fiber FO membranes. They similarly performed interfacial 

polymerization of TMC and MPD on both inner and outer surface of porous 

polyethersulfone (PES) substrate (Chou et al., 2010; Wang et a l, 2010b). According 

to their results, a preferred FO membrane structure includes a thin, highly porous 

substrate possessing very small part of sponge-like layer (Chou et al., 2010). In 

addition, this group fabricated flat sheet TFC FO membrane which had a special 

morphology. The morphology consisted of finger-like pores under a thin sponge-like 

skin layer of PSF. It was concluded that the impact of substrate structure on the 

performance of FO membrane is great. Comparing straight finger-like pore 

morphology with the spongy pore structure of the support layer, the former shows 

lower internal concentration polarization (ICP) (Wei et al., 2011b). In 2012, this 

group made a hollow fiber membrane for power generation through pressure 

retardant osmosis (PRO) process (Chou et al., 2012).

By the use of IP method, TFC FO membranes containing sulfonated material 

were made by Widjojo et al. (2011). They reported that presence of sulfonated 

material can affect support layer significantly. As sulfonated material content 

increases, more sponge-like structure will develop. This positively affects permeate 

flux. In addition, it is widely reported that hydrophilicity of the substrate plays a 

critical role in FO performance because higher hydrophilicity facilitates diffusion of 

water molecules across the membrane (Widjojo et al., 2011; McCutcheon and
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Elimelech, 2008). By introducing sulfonated PES, Wang’s group tried to increase 

hydrophilicity of the substrate and thereby improve FO membrane performance 

(Wang et al., 2012b). Recently, Song et al. (2011) produced nanofiber TFC FO 

membrane through electrospinning and interfacial polymerization technique. This 

membrane has low tortuosity and high porosity which reduced membrane structural 

parameter and finally increased water flux. Ultimately, it was observed that water 

flux of nanofiber TFC FO membrane is three times higher than typical TFC FO 

membrane (Bui et al., 2011).

Very recently, Emadzadeh et al. (2014b) modified the substrate of TFC FO 

membrane by addition of titanium dioxide (Ti02) nanoparticles into PSF substrate . 

Experimental results verified that the FO membrane incorporated with 0.5 wt% Ti02 

demonstrated the most satisfactory results by exhibiting high water permeability and 

low reverse solute flux in both FO and pressure retardant osmosis (PRO) 

configurations. The flux improvement was around 90% and 71.5% comparing with 

the control TFC membrane for PRO and FO modes, respectively. Ma et al. (2013) 

studied effect of zeolite NaY nanoparticles on substrate of TFC membrane used for 

FO processes. Similar to Ti02, it was reported that 0.5 wt% was the optimum value 

of zeolite NaY loading into nanocomposite substrate to simultaneously achieve high 

water flux and good solute rejection. This group also added NaY zeolite 

nanoparticles into a polyamide (PA) layer obtained by IP of MPD and TMC 

monomers to prepare a thin film nanocomposite (TFN) membrane for FO application 

(Ma et al., 2012). Their investigations showed that by addition of only 0.1 wt/v% 

zeolite into PA layer, the best permeable TFN membrane with significantly higher 

water permeability than that of usual TFC membrane could be obtained. The 

improved water permeability is ascribed to the sub-nanometer pores existing in the 

zeolite particle. These pores create narrow size channels for transportation of water 

molecules.
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1.2 Problem Statement

FO processes based on membrane technology have drawn attention of many 

scientific communities as a potential candidate for desalination processes (Chou et 

al., 2010; Wang et al., 2010b; Cath et al., 2006). Low water permeability and salt 

rejection are two important drawbacks of the commercial FO membranes which limit 

their extensive application. On the other hand, TFC FO membranes containing 

porous support layer and a thin PA selective layer show higher water flux and better 

solute rejection in comparison with commercial FO membranes (Wei et al., 2011b; 

Wang et al., 2010b). Although various advantages of TFC membranes are mentioned 

here, they also suffer from some main challenges. These include low water flux, 

reverse solute diffusion, membrane fouling and internal concentration polarization. 

Considering these drawbacks, this research aims to prove performance of TFC FO 

membranes by tailoring both membrane selective layer and porous support layer.

In both FO and PRO processes, osmotic pressure difference is the driving 

force. In these membranes, features of the support layer strongly influence efficiency 

of the process. Here water molecules chemically diffuse across the membrane in both 

FO and PRO processes. As a result, decrease in flux can be expected due to internal 

concentration polarization (ICP). ICP refers to dilution of the draw solution in the 

porous substrate which leads to dramatic decrease in driving force across the FO 

membrane. It is concluded that ICP in FO process will be minimized if substrate 

layer has a small structural parameter, 5, (McCutcheon and Elimelech, 2006). 

Moreover, substrates with higher hydrophilicity show lower resistance against water 

passage and allow more water productivity.

Various approaches have been considered for improving the performance of 

TFC FO membranes via modification of substrate. In this regard, different 

nanomaterials such as carbon nanotubes (CNTs) and Ti02 have been incorporated in 

the substrate of TFC FO membranes to improve their performance and efficiency in 

minimizing ICP (Emadzadeh et al., 2014b; Wang et al., 2013). Among all these 

nanomaterials, halloysite nanotubes (HNTs) are much cheaper, possess a unique
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structure and can be easily harvested and obtained in all over the world (Ghanbari et 

al., 2015b; Pan et al., 2011). Presence of hydroxyl groups on the surface of HNTs 

has made them highly hydrophilic in nature. Moreover, HTNs benefit from high 

stability, exhibit acceptable rejection against organic solvents and can be easily 

disposed or reused, which are crucial factors for fabrication of a membrane suitable 

for water recovery applications (Wang et al., 2011).

Another major issue faced by the most membrane based water separation 

processes including FO is extensive membrane fouling by which membrane 

performance declines in a long run. Due to their hydrophobicity and nanoscale 

“ridge-and-valley” morphology, fouling is an existing challenge for the aromatic 

TFC PA membranes used in FO processes (Lu et al., 2013). While fouling 

mechanisms and antifouling surface modifications of TFC FO membranes has been 

extensively studies, poor attention has been given to investigate fouling-resistant 

TFN FO membranes. Therefore, it is important to study and analyse the fouling 

behaviour of TFN FO membranes under extensive experimental conditions. It can be 

expected that the presence of hydrophilic HNTs in PA selective layer of TFN FO 

membranes could significantly improve fouling resistant of such membranes in long 

filtration time. Implications of these porous nano materials are discussed with respect 

to the requirement for improved fouling resistant FO membranes in desalination and 

water purification.

Developing FO membrane with nanomaterials embedded within the thin PA 

selective layer could be a novel strategy to tailor the technical obstacles of FO 

membrane, owing to the unique characteristics of nanomaterials to match with the 

thickness of PA layer. Recently, advancements in nanotechnology have made it 

possible to fabricate desirable porous nano-materials suitable for FO membranes 

making (Zhao et al., 2014). Among the nanomaterials available, nano-sized TiOi 

nanoparticles have been used widely to improve the characteristics of membranes 

owing to superhydrophilicity and potential of exhibiting antifouling behaviours (Cao 

et al., 2006; Bae and Tak, 2005). However, it should be noted that commercial 

crystalline TiO: nanoparticles possess high surface energies and direct use of them as
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nanofillers for TFN membranes fabrication may cause significant particle 

aggregation. This agglomeration can further negatively affect the potential 

antifouling abilities of TiO: particles and result in surface defects in PA layer 

(Razmjou et al., 20 11). Supported technology, which relies on deposition of TiC>2 

nanoparticles on the platform of supported nanomaterials with large surface area, is a 

promising and effective method for avoiding TiC>2 nanoparticles aggregation. The 

presence of hydroxyl radicals enable FINTs to be directly used as a support for TiC>2 

nanoparticles. It can be concluded that the unique tubular structure of HNTs coupled 

with the excellent anti-fouling features of TiC>2 have made TiC^/HNTs 

nanocomposites a reliable material with a bright perspective in improving the 

antifouling affinity of conventional thin film composite membranes for FO 

applications.

1.3 Objectives of the Study

Based on the aforementioned problem statements, the objectives of this study

i. To synthesize, characterize and evaluate TFN FO membrane with an 

optimized PSF-HNTs substrate for water desalination.

ii. To synthesize, characterize and evaluate TFN FO membrane with an 

optimized polyamide-HNTs selective layer for water desalination.

iii. To synthesize, characterize and evaluate TFN FO membrane with an 

optimized polyamide-Ti02/HNTs selective layer for water desalination.
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1.4 Scope of the Study

In order to achieve the objectives, the following scopes have been considered:

i. Synthesizing TFN FO membranes with top selective layer formed via 

interfacial polymerization of 1,3-phenylendiamine (MPD) in aqueous 

solution and 1,3,5-benzenetricarbonyl trichloride (TMC) in hexane solution 

over substrates made of different PSF-HNTs nanocomposite.

ii. Fabricating TFN FO membranes with different characteristics of polyamide 

selective layer by adding various concentrations of HNTs (zero-0.1 wt/v %) 

into TMC-cyclohexane solution.

iii. Synthesizing Ti02/HNTs nanocomposites via one step solvothermal method 

and using them as nanofillers in the preparation of TFN membranes for FO 

application.

iv. Characterizing the properties of synthesized Ti02/HNTs, PSF-HNTs TFN , 

PA-HNTs TFN and PA-Ti02/HNTs TFN membranes using electron 

microscope (FESEM), atomic force microscope (AFM), transmission 

electron microscope (TEM), X-ray diffractometer (XRD), Fourier transform 

infrared spectroscope (FTIR), X-ray photoelectron spectroscope (XPS) and 

contact angle goniometer.

v. Evaluating the performances of synthesized TFN membranes in terms of 

water flux and reverse draw solute at different membrane configurations, i.e. 

FO (active layer facing feed solution) and PRO (active layer facing draw 

solution) mode.

vi. Comparing the performances of two well-known commercial FO 

membranes, i.e. HTI-ES and CTA-HW with synthesized TFN membranes in 

various process conditions.

vii. Determining S parameter values to evaluate the propensity of internal 

concentration polarization in the synthesized TFC/TFN membranes.
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viii. Studying the organic fouling properties of synthesized TFC/TFN 

membranes through operation time in FO mode.

1.5 Organization of the Thesis

This thesis which consists of seven chapters describing synthesis of TFN 

membranes which will be used for water desalination through FO process. The first 

chapter gives a concise introduction to the desalination process and points out to the 

history of the research. The problem statement which determines the research 

direction is also illustrated in this chapter. Considering problem statement, the 

objective and scope of the research are explained. In chapter two, a literature review 

regarding FO systems for desalination is presented. FO is compared with other 

membranes used for desalination and its advantages are highlighted. Afterward, the 

challenges experienced during development of the FO membranes are described. 

Moreover, current investigations concerning development of TFC FO membranes are 

discussed. In chapter three, synthesis and characterization of Ti02/HNTs and TFN 

FO membranes are discussed in details.

In chapter four, by addition of different quantity of halloysite nanotubes 

(HNTs) into PSF support, nanocomposite substrates are fabricated. Thin PA layers 

are formed over the substrates by performing interfacial polymerization. The 

resulting TFN membranes are used for water desalination in FO application. Chapter 

five introduces new antifouling HNTs-PA TFN FO membranes which are used for 

water desalination. In chapter six, synthesized Ti02/HNTs are applied as nanofillers 

in preparation of high performance TFN membranes for water desalination. Finally, 

concluding remarks obtained from this research and general suggestions for future 

investigations are proposed in chapter seven.
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