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ABSTRACT 

 

 

 

 

Methane dry reforming (MDR) is a promising way for fuel production due to 

the mitigation of carbon dioxide (CO2) and methane (CH4) emissions, as well as 

tackling global warming. Recently, dielectric barrier discharge (DBD) has received 

much attention for greenhouse-gas conversion. This study is divided into two main 

parts. In the first part, the feasibility of the main reactions in MDR as well as the key 

reactions generating solid carbon was investigated. A carbon-free MDR is practically 

possible by increasing the temperature higher than 1173 K at the atmospheric 

pressure, yielding a considerable amount of syngas with hydrogen to carbon 

monoxide ratio of unity (H2/CO=1) suitable for downstream Fischer–Tropsch 

synthesis. A thermodynamic analysis was also performed for oxidative MDR to 

identify the condition for syngas production with no carbon deposition, with the 

minimum loss of syngas and a higher reactant conversion at a lower temperature. In 

the second part of the work, extensive laboratory and modeling studies were 

conducted to identify the effects of influential parameters (discharge power, CO2/CH4 

ratio, gap spacing, and reactant flow rate) on DBD MDR in terms of reactant 

conversion, product distribution, discharge characteristics (including the reduced 

electric field, breakdown voltage, dielectric and gas capacitances, electron density, 

electron energy distribution function and mean electron energy) and energy 

efficiency. In the present study, CO2/CH4 ratio of 1, the flow rate of 50 ml/min, 

discharge gap of 1 mm, discharge power of 30 W and frequency of 10 kHz have been 

justified to present acceptable values of reactant conversion and yields of CO and H2 

as well as to maintain the H2/CO ratio of close to unity (suitable for liquid fuel 

production) while maximizing the energy efficiency, conversion ability and 

production ability of H2 and CO. Reactant dilution with coplasmagen gas, argon (Ar), 

facilitates the plasma generation due to their low breakdown voltage. Therefore, the 

effects of the diluent gas (Ar) on DBD MDR in terms of reactant conversion, product 

selectivity, discharge characteristics and energy efficiency were investigated. The 

results revealed that higher Ar dilution factor led to the greater performance and a 

further restriction of carbon deposition. To benchmark our model forecasts, we also 

presented an overview of reported conversions and energy efficiencies in literature, to 

show the potential for an enhancement in comparison with the state-of-the-art. 

However, adding Ar is not an economical approach to improve the efficiency of non-

catalytic DBD MDR, due to increased energy consumption. Furthermore, a global 

kinetics model for Ar diluted DBD CH4/CO2 was proposed, and the kinetics 

behaviour was compared to the one for helium (He) diluted DBD MDR reported in 

the literature.  
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ABSTRAK 
 

 
 

 

Pembentukan semula metana kering (MDR) adalah cara yang berpotensi 

untuk pengeluaran bahan api disebabkan oleh pengurangan karbon dioksida (CO2) 

dan pengeluaran metana (CH4), serta dapat menangani isu pemanasan global. Pada 

masa ini, pembuangan halangan dielektrik (DBD) telah menerima banyak perhatian 

sebagai kaedah penukaran gas rumah hijau. Pada bahagian pertama, kebolehupayaan 

tindak balas MDR serta tindak balas utama penjanaan karbon pepejal dikaji. MDR 

bebas karbon berkemungkinan boleh terhasil dengan meningkatkan suhu yang lebih 

tinggi daripada 1173 K pada tekanan atmosfera bagi menghasilkan sejumlah besar 

syngas dengan nisbah hidrogen kepada karbon monoksida (H2/CO=1) yang sesuai 

untuk sintesis hiliran Fischer-Tropsch. Analisis termodinamik dilakukan untuk MDR 

oksidatif bagi mengenalpasti keperluan pengeluaran syngas tanpa pemendapan 

karbon dengan jumlah minimum kehilangan syngas dan penukaran bahan tindak 

balas lebih tinggi pada suhu yang lebih rendah, Seterusnya dalam bahagian kedua, 

melalui kajian makmal dan pemodelan yang menyeluruh, kesan daripada parameter 

utama (kuasa pelepasan, nisbah dan kadar aliran bahan tindak balas CO2/CH4 , jarak 

gas) pada DBD MDR dari segi penukaran bahan tindak balas, pengagihan produk, 

ciri-ciri pelepasan (termasuk pengurangan medan elektrik, pengirangan voltan, 

kepadatan elektron, fungsi pengagihan tenaga elektron dan purata tenaga elektron) 

dan kecekapan tenaga dikaji. Dalam kajian ini mendapati nisbah CO2/CH4 kepada 1, 

dengan kadar aliran 50 ml/min, jarak pengeluaran 1 mm, kuasa pelepasan 30 W dan 

frekuensi pada 10 kHz memberikan nilai pertukaran bahan kajian dan penghasilan 

CO dan H2 yang boleh diterima di mana nisbah H2/CO menghampiri penyatuan 

(sesuai untuk penghasilan cecair minyak) dengan memaksimumkan kecekapan 

tenaga, keupayaan penukaran dan penghasilan H2 and CO. Bahan tindak balas 

pencairan dengan gas koplasmagen, argon (Ar), memudahkan penghasilan plasma 

akibat voltan pecahan rendah. Oleh itu, kesan gas pencair (Ar) pada DBD MDR dari 

segi penukaran bahan tindak balas, pemilihan produk, ciri-ciri pelepasan dan 

kecekapan tenaga telah dkaji. Keputusan menunjukkan bahawa lebih tinggi faktor 

pencairan Ar membawa kepada peningkatan prestasi dan lanjutan pada sekatan 

pemendapan karbon. Sebagai penandaaras model ramalan, tinjauan dari laporan 

ilmiah mengenai penukaran dan kecekapan tenaga bagi menunjukkan peningkatan 

potensi berbanding tahap pencapaian dibentang. Walau bagaimanapun, menambah 

Ar bukan satu pendekatan ekonomi untuk meningkatkan kecekapan bukan 

pemangkin DBD MDR kerana ia meningkatkan penggunaan tenaga. Oleh yang 

demikian, model kinetik global untuk DBD dicairkan Ar, CH4/CO2 adalah 

dicadangkan dan perbandingan tingkah laku kinetik dengan DBD MDR dicairkan 

helium (He) berdasarkan kajian lepas yang dilaporkan. 
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CHAPTER 1  

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Natural Gas the Most Available Basic Fossil-Fuel 

 

 

Natural gas (NG) is an abundant, inexpensive and clean fuel. It has been 

formed during millionsofyears,undertheearth’sgroundwithin the rocks surfaces or 

shelves. The principal components of NG are CH4 and CO2. The composition of the 

substances in NG is different and related to the type of the reservoir rocks and the 

type of the organic material. There are approximately 5,000 trillion cubic feet NG 

reservoirs equal to roughly 47% of the world's petroleum (Mooday, 1998). It is also 

mentioned that there are large resources of methane hydrates isolated in the vast 

regions of the subarctic tundra and under the seas where the continental shelves exist. 

These kinds of hydrocarbon resources will finally be exploited, although it will be 

more difficult to utilize them due to exhausting procedures such as drilling and 

extraction (Olah et al., 2006).  

 

 

Figure 1.1 depicts the geographical regions of world proven natural gas 

reserves, of which substantial extents are reported in Middle Eastern and Eurasian 

countries. 
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Figure 1.1  World NG reserves by geographic region, January 2011 (Vera J., 2011) 

 

 

In spite of availability and low-cost of methane, the hazardous specification of 

natural gas is the reason for being economically unfeasible to transport over far 

distances. For more descriptions, it needs to be compressed and pumped through the 

long pipe lines, which is expensive and rarely practical. Furthermore, methane has 

hazardous physical properties to make it difficult to handle. It remains in the gas 

form; even in very high pressure is impossible to be liquefied. However, the 

significant attention of researchers to natural gas is attributed to search for the 

substituents to replace petroleum-based resources and for producing energy with low 

carbon emissions. Such an attention led to the deep and serious research, especially 

among developed countries (Klemm et al., 2005; Klemm et al., 2006; Simkovic, 

2008). Furthermore, independent scarcity of oil in the near future is stimulating the 

governments to devote the research for a substituent that can compensate the 

shortcoming of oil-based fuels. In comparison, natural gas reserves are not as 

valuable as the petroleum reservoirs. Due to this fact, there is no sufficient care of 

natural gas associated with petroleum reservoirs. While the highly precise petroleum 

is carefully under-exploited, the natural gas coupled with petroleum reservoirs is 

volatilized into the environment or burnt inside the flares. Providentially, this 
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situation is increasingly changing to attract more attention to maintain the natural gas 

resources due to the enhanced demand of the market to hydrogen production. Among 

the common fossil-fuels, natural gas is the most proper for hydrogen production. It is 

worth noting that natural gas is a clean and environmentally friendly fossil-fuel while 

emitting low amounts of carbon to the atmosphere. Therefore, natural gas is largely 

distributed to homes for household consumption such as cooking and central heating. 

Moreover, natural gas has been utilizing in gas-fired power plants in order to generate 

electricity.  

 

 

Methane is released from various natural and human-influenced resources. It 

has a capacity over 20 times greater than CO2 to absorb and maintain the heat in the 

atmosphere. Landfills, coal mining, agricultural activities, waste water treatment and 

combustion systems are common examples of human-influenced sources. Since 

methane is the principal components of natural gas, it is very promising and efficient 

to utilize methane as a feedstock for production of highly valuable chemicals and 

clean fuels. In the case of CO2, the flue gases of fossil-fuel based power plants, 

cement and steel factories produce a large amount of CO2 and need significantly to be 

controlled. Carbon dioxide is used in flash drying, welding, brewing, enhanced oil 

recovery (EOR) and carbonated beverages. Moreover, it has been employed as 

chemical feedstock, inert gas, and as a supercritical fluid for solvent extraction. The 

major CO2 sources are (Chapel et al., 1999): 

 

1- CO2 wells  

2- Natural gas sweetening  

3- Natural sources 

4- Syngas production 

5- Flue gases 

6- Fossil fuel-fired power plants 

7- Cement plants 

8- Industrial furnaces 

9- Lime kiln exhausts 

10- Engine exhausts 
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The CO2 released by the petrochemical plants can be recovered and utilized in 

the other industries. However, the amount of CO2 produced by petrochemical 

industries is much higher than its consumption. According to aforementioned, since 

the most utilized feedstock for syngas production is currently CH4, it plays a key role 

in the world's energy infra-structure. Moreover, CH4 as a major contributor to the 

man-made greenhouse effect has attracted much attention since it can be converted 

into higher hydrocarbons and easily transportable liquids, such as methanol 

(CH3OH), di-methyl ether (DME) and formaldehyde (HCHO). It is expected that 

methane will become increasingly important in the production of energy and 

chemicals during this century (Brown and Parkyns, 1991; Roth, 1994). 

 

 

 

 

1.2 Background of Syngas Production 

 

 

Syngas (synthesis gas), a versatile energy source, is the product of gasification 

or reforming of a carbon containing fuel such as coal, oil, natural gas, heavy residual 

fuel oil, gas oils, and biomass. Steam reforming of methane, the most preferred 

processes among the syngas production methods, contributes to 50% of global 

processes of hydrogen production. Nowadays, this figure touches 90% in the U.S. In 

this process, the reaction of natural gas (methane) with vaporized water in the 

presence of a metallic catalyst under high pressure and temperature generates syngas. 

During the past decades, heavier hydrocarbons up to naphtha have been employed as 

feedstock for syngas production over developed and selective catalysts (Olah et al., 

2006).  

 

 

Although the formation of syngas from oil has been well-established for a 

long time, is not permanent since it is not supposed to meet the market demand in the 

long term, due to deficiency of oil reservoirs. In fact, the feedstock for syngas 

production is related to available resources in different countries and the downstream 

application. For instance, in the USA, coal was used as a conventional feedstock to 
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generate syngas in 1940s (Mooday, 1998). At that time, natural gas due to being an 

inexpensive and efficient primary fuel source was introduced to the market and 

utilized in many plants such as methanol production units all over the world. In 

contrast tonaturalgas, theworld’scoal reservoirsare extensive and accessible at a 

lower price. However, the syngas produced by coal contained a larger quantity of 

CO2 compared to its counterpart produced by natural gas due to coal’sdeficiencyin

hydrogen. Additionally, a great quantity of energy is required for removing or 

sequestering the produced CO2, causing a large increase in the process cost (Neiva 

and Gama, 2010). 

 

 

 According to one estimation (Yamamura et al., 1982), the investment for a 

methane-based syngas unit is almost three times lower than that for a coal-based 

syngas plant. Therefore, the syngas with low H2/CO ratio could not be appropriate 

when using as a feedstock in most of chemicals plants such as methanol production, 

and gradually, avoided by the chemical industries of this field. Hence, natural gas is 

the most favorable fossil-fuel for syngas production due to the production of cheapest 

syngas and highest hydrogen to carbon monoxide ratio, which reduces the formation 

of carbon dioxide as a by-product (Parmon et al., 1998). 

 

 

The term syngas is derived from its usage as an intermediate for generation of 

synthetic natural gas and creating ammonia or methanol (Olsbye et al., 1997). The 

potential of syngas conversion into valuable chemicals provides an attractive 

substituent to petroleum-based fuels and organic products. It is employed as a 

suitable feedstock for producing various kinds of products such as a transport fuel 

and electricity. The energy density of syngas is about 50% of that of natural gas. As 

syngas mostly comprises of H2, CO, CH4 and CO2, it has some heating value and is 

well-suited for using as either heating gas or as a building-block feedstock for 

downstream applications such as fuel and chemical production (Saeidi et al., 2014). 

The relative quantity of each species in the produced syngas depends on different 

parameters, such as type of feedstock, processing procedures and operation 

conditions. If syngas contains a large amount of nitrogen, this nitrogen should be 

removed. Since nitrogen and carbon monoxide have almost equal boiling points, 
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which are -195.79 °C and -191.5 °C, respectively, post-treating of syngas by 

cryogenic processing in order to recover pure carbon monoxide would be very 

difficult. The carbon monoxide with the purity in the order of 99% is a proper 

feedstock for using in industrial purposes. The process gas comprising of CO2, H2, 

CH4 and N2 can be further treated by a special purification method to separate H2. 

Regardless of the end-use, the particle impurities should be removed from syngas in 

scrubbers or cyclones as a first step of gas purification. Afterward, the gas stream is 

directed to ultimate purification where CO and H2 are separated. The production cost 

notably depends on the final separation technique. There are four main techniques for 

purification of the process gas: 

 

1- Pressure swing adsorption (PSA)  

2- Cryogenic purification  

3- Salt solution absorption  

4- Membrane separation 

 

 

The pure H2 and CO, then, can be mixed in an appropriate ratio for using in 

Fischer-Tropsch process or in the other desired chemical production. Considering the 

downstream application, the ultimate hydrogen to carbon monoxide ratio can be 

adjusted employing the water-gas shift reaction (Saeidi et al., 2014). Different 

qualitative analyses are required to select the most suitable and economic syngas 

production process for an especial application. Different downstream applications 

need different process criterion. Therefore, determination of the key factors, 

evaluation of the reaction process method and final gas processing techniques in 

detail are of great importance. When designing a syngas plant, some of the key 

factors such as unit capacity, feedstock accessibility, hydrogen to carbon monoxide 

ratio, and product purity are necessary to be determined since they strongly affect the 

reaction process design and the selection of the syngas production method. 
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1.3 Problem Statement 

 

 

There are different basic methane reforming reactions for syngas production 

depending on the downstream objectives. Methane can be converted to hydrogen by 

steam reforming, partial oxidation and dry reforming or distinct combinations of 

these reforming reactions. Currently, syngas is mainly produced by methane-based 

steam reforming process. However, there are some inevitable drawbacks associated 

with steam-reforming of methane: 

 

1- The stoichiometric H2/CO ratio in the produced syngas by methane steam 

reforming is 3, which is higher than the value required by some downstream 

applications such as FTS (Eliasson et al., 2000; Li et al., 2007; Zhu et al., 2001). 

 

2- Due to the endothermicity of the reaction of steam reforming of methane, a 

large amount of energy is needed, resulting in a costly and energy-intensive process. 

The amount of energy required by the reaction is generally supplied by burning the 

other fossil-fuels like methane or coal, which add greenhouse gases to the 

atmosphere. 

 

3- The necessity to use a selective and efficient catalyst for steam reforming of 

methane lead to the great demand on the process management and on the reactant 

purification to avoid coke formation, sintering or poisoning of the catalytic materials, 

which are sometimes expensive and time-consuming. To minimize the carbon 

deposition on the catalyst, excess steam more than the stoichiometric value is added 

to the reaction system which itself leads to a higher operation cost. 

 

4- Furthermore, a considerable amount of CO2 (the greenhouse gas) is being 

produced in syngas and higher hydrocarbons production (Liu et al., 2003).  

 

 

Partial oxidation of methane produces a theoretical H2/CO ratio of 2, suitable 

value for many downstream synthesis processes such as methanol production.  Partial 

oxidation of methane into syngas is traditionally performed catalytically and non-
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catalytically. The catalytic process can be operated at the lower temperatures 

compared to non-catalytic counterpart, hence; it can be the most economical and 

efficient process for syngas production. However, the catalytic process is still under 

research on the laboratory scale, due to the instability function and short lifetime of 

the catalyst during the runs (Wu et al., 2005). In contrast, the non-catalytic methane 

partial oxidation process has been industrialized. It can operate at temperature and 

pressure of around 1300 ˚C and 30-100 atm, respectively. Thus, supplying high 

pressure and temperature lead to an expensive operation cost. 

As aforementioned, the conventional syngas (hydrogen) production 

techniques are expensive, not environmentally friendly due to a large quantity of CO2 

emissions and not very energy efficient. Hence, discovering and selecting a friendly 

environmentally syngas production route is considered necessary. In last decades, 

from the standpoint of simultaneous mitigation of two undesirable and less valuable 

greenhouse gases (GHG) emissions, CH4 and CO2, it has been of interest to employ 

methane dry reforming (MDR). The feasible utilization of CH4 and CO2 to higher 

value-added products such as higher hydrocarbons, syngas and liquid oxygenates are 

being investigated (Eliasson et al., 2000; Istadi et al., 2005; Olsbye et al., 1997). 

Additionally, this process has the potential benefit of generating a H2/CO ratio close 

to 1, a suitable ratio for production of oxygenates and long-chain hydrocarbons. 

Furthermore, it can be used in areas where water is not easily available (Olah et al., 

2006). It is worth noting that biogas containing a substantial amount of CO2 without 

pre-separation of CO2 can be widely employed as the feedstock. 

There are two major challenges concerning catalytic MDR by which the 

commercialization of this process can be limited: the first one is associated with the 

high temperature (>700 ˚C) requirement in order to reach the acceptable yield of 

syngas and reactant conversion. Supplying such a high temperature to break the 

strong C-H bonds of CH4 in this quite endothermic reaction calls for a high-energy 

cost. The second one is the deposition of intensive carbon, which clogs the pores and 

rapidly deactivates the metal phase of the catalyst, particularly the surface of the non-

noble metal catalyst. Thus, MDR is still under research at the laboratory scale. 
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The aforementioned challenges and defects associated with the current 

conventional techniques of CH4 reforming into syngas production have attracted the 

researcher’s interest in a substitute reforming methods with lower reaction 

temperature and pressure, more active catalyst and decreased process cost. However, 

in the initial steps of development for a new technology, further technological 

research would be necessary to accomplish before the technology could be 

commercialized or introduced to the market. 

There have been some investigations on the application of different kinds of 

plasma to break various molecular bonds since the 19
th

 century. A Norwegian-British 

company Gasplus developed an environmentally friendly breakthrough for 

production of hydrogen and a high-grade carbon black via methane decomposition. 

This technique which is called Kværner process established in Norway in the late 

1980s and has been industrialized since 1992 (Bromberg et al., 2001). In view of its 

advantages for on-board applications, eliminating CO2 emissions and enhancing the 

energy efficiency are eminent. It can be also an advantageous step for representing 

the future’s electric cars for which only water vapour exists in the exhaust gas. 

Depending on the case of application, the plasma reactor can be fabricated in the 

scale ranging from a small device to a gas station or even an industrial plant. 

Compliance with the request of exploiting syngas as a primary fuel would 

necessitate a large enhance in the syngas production capability. However, in view of 

the above, syngas production is expensive and introducing an efficient and cost-

effective method as well as a smaller scale developed reactor design with higher 

performance compatible with the market demand seems to be a distinguished step in 

present fuel resources. It is interesting to note that in the majority of the published 

research, data regarding the production ability and energy efficiency of methane dry 

reforming (MDR) in dielectric barrier discharge (DBD) has not been reported. 

Therefore, calculations and comparison of the energy efficiency of the different 

plasma techniques in order to make the effective remedies for reduction of the gap 

between the experimental and industrial values seem necessary. 
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1.4 Hypothesis 

One of the suggested approaches for the reactions to occur is generating 

abundant levels of free radicals, which in contact and collision to the other excited 

molecules or particles can produce a vast variety of products. It is proven that plasma 

technology can generate a huge amount of free radicals, which play an important role 

in oxidative and non-oxidative reactions. In fact, non-equilibrium plasma technology 

overcomes the disadvantages of the commercial and high-temperature methods 

because the major amount of the electrical energy is consumed for the formation of 

energetic electrons, which are responsible for breaking C-H bonds of methane instead 

of heating the gas (Olah et al., 2006). The potential of plasma reforming for syngas 

(or H2) formation from natural gas (methane) has revealed a promising perspective 

for either on-board vehicles or stationary industrial application. Therefore, the 

necessity for H2 storage and transport piping which both are costly and hazardous can 

be eliminated. The plasma reformer has the significant advantages of rapid start-up, 

compactness, light weight and low device cost. 

 

 

In MDR, a dilution gas being chemically inactive is often introduced to the 

reactant mixture. Note that in the case of plasma, if the diluent gas does not activate 

CO2 and CH4, it cannot be a proper choice. Ar and He can affect the plasma 

discharge due to their lower breakdown voltages in comparison with the reactants of 

CH4 and CO2, which lead to the increased ionization and dissociation processes. 

Indeed, according to the literature (Avtaeva et al., 1997), rare gas atoms such as Ar 

and He can be excited to the metastable levels and ionized states, which are 

responsible for energy transfer in the plasma. The excitation and ionization process 

for the rare gas atoms (Ar and He) are listed as below (Avtaeva et al., 1997): 

 

Ar + e
-
 → Ar

*
+ e

-
               (1.1) 

Ar → Ar
+
+ e

-      
                    (1.2) 

He + e
-
 → He

*
+ e

-
               (1.3) 

He → He
+
+ e

-      
                    (1.4) 
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In fact, addition of noble gases such as He or Ar causes a greater value for 

electron energy distribution function in the gas discharge state, resulting in more 

opportunities for inelastic impact of methane/carbon dioxide with the co-reactants 

and the other species (Pu et al., 2006). Hence, it is supposed that the ionization of 

CH4 and CO2 molecules in the presence of noble gases would become higher; and 

dissociation of CH4 and CO2 is faster. 

 

 

A large number of studies about kinetics models of catalytic methane steam 

reforming (MSR) and MDR on a different catalyst at laboratory scale have been 

reported in the literatures (Bebelis et al., 2000; Xu and Froment, 1989). However, due 

to the difference between molecular and species interactions behavior in non-thermal 

plasma and thermal reactors, these kinetics models are not applicable and valid for 

MDR with CO2 in non-thermal plasma reactors. In has been proven that reactions 

between free radicals govern the reaction mechanism in DBD plasma chemistry. In 

our work, CO2 and CH4 are introduced into the reactor with a dilution gas, which is 

itself a case under plasma. In this regard, presenting a kinetics model that can explain 

the behavior of MDR with CO2 in the presence of a diluent in DBD reactor is 

considered to be useful. 

 

 

 

 

1.5 Objectives of the Research 

 

 

Considering the main problems regarding the traditional syngas production, 

the purpose of this investigation is to evaluate the feasibility of producing reasonable 

quantities of syngas by MDR using a DBD plasma reactor. The main objectives of 

this study focus on: 

 

1- Performing thermodynamic analysis of possible reactions in CO2 reforming of 

CH4 in order to feasibility study of producing syngas, hydrocarbon, and methanol by 

MDR. 
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2- Investigating the effect of important parameters of CO2/CH4 ratio, residence 

time (by varying gap distance and flow rate), and discharge power on the conversion, 

product distribution and energy efficiency of the plasma performance. 

 

3- Evaluating the electrical discharge characteristics (such as voltage and current 

waveforms, transferred charges and total capacitance) of CO2/CH4 reactant mixture 

diluted with Ar in DBD.  

 

4- Determining the effects of Ar on reactant conversion, product distribution, 

energy efficiency and production ability in MDR using DBD-plasma reactor and 

comparing the results with that of conventional approach. 

 

5- Deriving a global reaction kinetics model for Ar diluted MDR. 

 

 

 

 

1.6 Scopes of Research 

The scopes of this research are focused on the procedures and concepts 

resulting in more findings about MDR into syngas via a DBD plasma reactor: 

 

1- Thermodynamic equilibrium analysis of possible reactions in MDR with CO2 into 

syngas and hydrocarbons. 

 

2- Set up a DBD-plasma rig consisting of the electrical discharge diagnostics, flow 

measurement instruments, plasma generator and gas product analysing to conduct 

experiments. 

 

3- The appropriate values of the dominant process parameters such as CO2/CH4 

ratio, discharge power and residence time (by varying gap distance and flow rate) 

in terms of the energy efficiency, carbon deposition and reaction performance are 

determined. 
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4- Effect of Ar introduced into the CO2/CH4 reactant mixture are investigated to 

understand more deeply the role of the diluent as energy transfer shuttles on the 

performance and energy efficiency of the blank DBD reactor. 

 

5- The simplified kinetics model is derived considering the activated CH4 and CO2 

species and generated fragments by the exerted discharge power, which is aimed 

to determine the practical behaviour of MDR diluted by different mole fractions 

of the Ar. 

 

 

 

 

1.7 Expected Contribution  

 

 

1- The equilibrium optimal condition for syngas production by MDR and oxidative 

MDR with negligible carbon deposition and water formation while the loss of 

syngas is minimal would be expected. 

 

2- A bridge is supposed to be built between electrical discharge characteristics of 

pure/diluted MDR in DBD and their reaction performance in order to determine an 

operating condition leading to a higher reactant conversion and energy efficiency. 

 

3- The kinetics model of Ar diluted CO2/CH4 mixture at two types of conditions: one 

in the lower Ar content (less than 50%) and another one in the higher Ar content 

(higher than 50%) is expected to be presented. 
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1.8 Organization of the Thesis 

 

 

This thesis is organized into seven chapters as shown in Figure 1.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2  Organization of the thesis 

 

 

Chapter 1 provides background of the research, problem statement, objectives and 

scopes of the study. Chapter 2 provides a review of related literature about the 

different types of hydrogen/syngas production along with their challenges. In 

addition, a variety of plasma reactors as new and promising alternatives for MDR 

and their advantages/disadvantages are discussed. The current research regarding the 
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In this section, the optimal operating condition of DBD plasma reactor is 

determined and then applied in studying the effect of diluent gas on the reactor 

performance. In this regard, the possible roles of diluted MDR with the various 

contents of the inert gas in terms of plasma discharge characteristics, reactant 

conversion, product distribution and energy efficiency of DBD reactor are discussed. 

Moreover, a comparison between the performance of diluted and undiluted DBD 

MDR with the earlier research is available in this study. The kinetics model for 

diluted MDR with Ar determined from Chapter 5 is presented in Chapter 6. Finally, 

Chapter 7 lists the contribution of the research and our recommendations for the 

future work. 

 

 

 

 

diluted CH4 reforming and the reaction kinetics are also presented.  

 

 

Chapter 3 provides the general description of research methodology for the 

thermodynamic analysis of MDR in view of carbon formation as well as the reaction 

kinetics for diluted MDR in detail. Chapter 4 investigates the thermodynamic 

analysis of MDR in view of carbon formation using Gibbs free energy minimization. 

Meanwhile, the experimental strategy for investigating the electrical discharge 

characteristics and the effect of dilution of CO2 and CH4 with Ar is presented in The 

optimal condition for syngas production from MDR and oxidative MDR with 

negligible carbon deposition and water production are addressed. Chapter 5 

investigates the effect of important parameters of CO2/CH4 ratio, residence time and 

discharge power on reactant conversion, product distribution as well as energy 

efficiency of the plasma reactor. In this regard, the variation trends in reactant 

conversion and product distribution caused by introducing different amounts of CO2 

into the reactant mixture are reconciled by further discussion on the electrical 

discharge characteristics and the most important reactions involved in the plasma 

reaction system such as electron impact dissociation and excitation of CH4 and CO2. 
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