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ABSTRACT 

 

 

 

 

 2–chlorophenol (2–CP) which had been widely used in industry and daily life 
is a priority toxic pollutant that has caused considerable damage to the aquatic 
ecosystem and human health. Due to this reason, continuing study on efficient 
catalyst for degradation of this recalcitrant pollutant has been conducted in these 
recent years. In this study, goethite (α–FeOOH) was synthesized by an 
electrochemical method in a cationic surfactant solution and subsequent 
impregnation with mesostructured silica nanoparticles (MSN) gave α–FeOOH/MSN. 
The catalysts were characterized using X–ray diffraction (XRD), transmission 
electron microscopy (TEM), Fourier transform–infrared (FT–IR), 29Si magnetic 
angle spin nuclear magnetic resonance (29Si MAS NMR), nitrogen physisorption 
analysis, electron spin resonance (ESR), and X–ray photoelectron spectroscopy 
(XPS). The results indicate that the cationic surfactant was retained around α–
FeOOH surface with a free swinging alkane tail pointing outward from the catalyst. 
The performance of the catalysts were tested on the photodegradation of the 2–CP in 
a batch reactor under visible light irradiation. The results showed that the α–FeOOH 
were able to inhibit electron–hole recombination to give complete degradation of 50 
mg L−1 2–CP at pH 5 when using 0.03 g L−1 catalyst and 0.156 mM of H2O2. In 
contrast, it was found that by introducing the α–FeOOH to the MSN support, 
sequential silica removal in the MSN framework and isomorphous substitution of Fe 
ion was occurred, which able to effectively degrade the 2–CP with degradation 
percentage of 92.2, 79.3, 73.1, and 14.2%, with the loading of α–FeOOH in the 
following order: 10 wt% > 15 wt% > 5 wt% > MSN, respectively. Beside the 
retainment of the cationic surfactant structure on the catalysts, the MSN was also 
elucidated to play an important role as an electron acceptor that enhanced the 
electron–hole separation. Response surface methodology (RSM) analysis for the α–
FeOOH and α–FeOOH/MSN catalysts showed good significance of model with low 
probability values (<0.0001) and a high coefficient of determination (R2). The kinetic 
studies of both catalysts illustrated that surface reaction was the controlling step of 
the process. Reusability study showed that both catalysts were still stable after more 
than 4 subsequent reactions. The upscaling study using 10–fold upscale system 
indicate superior performance of the catalysts with almost complete degradation of 
2–CP. The employment of the catalysts on degradation of various pollutants such as 
phenol, cationic dye and anionic dye has also showed remarkable performance, 
suggesting the potential use of the catalysts for various applications. Significantly, 
the synthesis method of these catalysts could be a great advantage in the future 
development of nanotechnology. 
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2-klorofenol (2-CP) yang telah digunakan secara meluas dalam industri dan 
kehidupan seharian adalah pencemar toksik utama yang telah menyebabkan 
kerosakan besar kepada ekosistem akuatik dan kesihatan manusia. Oleh itu, kajian 
berterusan mengenai pemangkin yang berkesan untuk penurunan pencemar tegar ini 
telah dijalankan pada tahun-tahun kebelakangan ini. Dalam kajian ini, goethite (α-
FeOOH) telah disintesis oleh kaedah elektrokimia dalam larutan surfaktan kationik 
dan penyahtepuan seterusnya dengan nanopartikel silika meso-struktur (MSN) 
memberi α-FeOOH/MSN. Pemangkin tersebut telah dicirikan menggunakan 
pembelauan sinar-X (XRD), mikroskopi transmisi elektron (TEM), spektroskopi 
inframerah transformasi Fourier (FT-IR), 29Si putaran sudut ajaib resonans magnet 
nuklear (MAS 29Si NMR), analisis penjerapan nitrogen, resonans elektron spin 
(ESR), dan spektroskopi fotoelektron sinar-X (XPS). Keputusan menunjukkan 
bahawa surfaktan kationik dikekalkan di seluruh permukaan α-FeOOH dengan ekor 
alkana berayun bebas menunjuk ke luar pemangkin. Prestasi pemangkin diuji dengan 
penurunan 2-CP dalam reaktor kelompok di bawah sinaran cahaya tampak. Hasil 
kajian menunjukkan bahawa α-FeOOH dapat menghalang penggabungan semula 
elektron-lubang untuk memberi penurunan lengkap 50 mg L-1 2-CP pada pH 5 
apabila menggunakan 0.03 g L-1 pemangkin dan 0.156 mM H2O2. Sebaliknya, telah 
ditemui bahawa dengan memperkenalkan α-FeOOH itu kepada sokongan MSN, 
penyingkiran silika berurutan dalam rangka kerja MSN dan penukargantian isomorf 
ion Fe telah berlaku, yang berkesan menurunkan 2-CP dengan peratusan penurunan 
92.2, 79.3 , 73.1 dan 14.2%, dengan pemuatan α-FeOOH mengikut susunan yang 
berikut: 10% berat> 15% berat> 5% berat> MSN, masing-masing. Selain pengekalan 
struktur surfaktan kationik pada pemangkin, MSN juga memainkan peranan penting 
sebagai penerima elektron yang meningkatkan pemisahan elektron-lubang. Analisis 
kaedah permukaan respon (RSM) untuk α-FeOOH dan α-FeOOH/MSN 
menunjukkan penemuan baik dengan nilai kebarangkalian yang rendah (<0.0001) 
dan pekali penentu yang tinggi (R2). Kajian kinetik kedua-dua pemangkin 
menunjukkan bahawa tindak balas permukaan adalah langkah kawalan proses. 
Kajian kebolehgunaan semula menunjukkan bahawa kedua-dua pemangkin masih 
stabil selepas lebih dari 4 tindak balas. Kajian penskalaan menggunakan sistem 10 
kali ganda menunjukkan prestasi yang membanggakan daripada pemangkin dengan 
penurunan 2-CP yang hampir lengkap. Penggunaan pemangkin dalam penurunan 
pelbagai bahan pencemar seperti fenol, pewarna kationik dan pewarna anionik juga 
telah menunjukkan prestasi luar biasa, menunjukkan potensi penggunaan pemangkin 
untuk pelbagai aplikasi. Nyata, kaedah sintesis pemangkin ini boleh menjadi satu 
kelebihan yang besar dalam pembangunan masa depan teknologi nano.
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

 Within the last decade, there has been a growing concern related to the health 

impact and environmental damage due to phenolic compounds. The occurrence and 

widespread use of the phenolic compound and its derivatives as aromatic solvents, 

cleaning agents, biocides, preservatives and pesticides in the environment represents 

a serious problem owing to their toxicity, perseverance and accumulation in the 

environment while soluble phenolic compounds have revealed their absolute 

potential to enter the food chain (Santana et al., 2009). Adverse effects of the 

phenolic compounds and its derivatives on human, environment, as well as aquatic 

life have been recently reported (Maji et al., 2014) and have been associated to 

numerous biological disorders (Mangrulkar et al., 2008).  

 

 

Chlorophenols as derivatives of the phenolic compound were identified as a 

pollution concern due to their high toxicity, high stability, and potentially 

carcinogenic. For this reason, United States Environmental Protection Agency (US 

EPA) had listed them as priority pollutants (Gordon and Marsh, 2009). In Malaysia, 

Department of Environment (DOE) has enacted allowable limits as in Environmental 
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Quality Act 1979 (Sewage and Industrial Effluent) that this pollutant should be 

treated to be less than 1 mg L–1 for inland water discharged.  

 

 

Among chlorophenols, 2–chlorophenol (2–CP) has been considered to be the 

most toxic and carcinogenic. It is widely used in industry and daily life, and has 

caused considerable damage and threat to the aquatic ecosystem and human health 

(He et al., 2011). Due to the severe toxicity of 2–CP, there is a continuing study over 

appropriate methods to be used when eliminating this organic compound from 

aqueous systems. Several removal techniques including adsorption and solvent 

extraction are available for removing chlorophenols. However, these techniques 

suffer from the possibility for the generation of secondary pollution (Khan et al., 

2011). Other than that, biological treatment which commonly used for the 

decomposition of many chlorinated phenols has proven ineffective since chlorinated 

phenols are resistant to biodegradation in a satisfactory time period (Bandara et al., 

2001a). Therefore, other treatment technologies have received increased interest to 

substitute the conventional treatment method. 

 

 

 Among diverse alternative treatment technologies, advanced oxidation 

process (AOP) has shown absolute potential during the last decades as an abatement 

method for the degradation of the chlorinated phenols. The term “AOP” is used to 

describe the production of very active species like hydroxyl radicals (•OH) which 

depends on the oxidation mechanism. The treatment process provide a great 

advantage that they completely degrade the organic pollutants from the environment, 

which not only from the aqueous phase, but also by substituting them into other 

organic compounds before transforming them into innocuous inorganic species 

(Bertelli and Selli, 2006). Among various types and combinations of AOPs, the 

integration of two different AOPs (photocatalytic and Fenton–like), which 

commonly known as photo–Fenton–like, often offers synergistic reaction routes for 

the production of •OH and has been shown to be suitable for the degradation of 

various chlorinated phenol pollutants (Munoz et al., 2011, Metz et al., 2011). 
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 The most extensively studied photocatalyst for the photodegradation of 

organic and inorganic contaminants in wastewaters is titania–based catalysts, 

especially titanium dioxide, TiO2 (Khalil et al., 1998). However, the commercial 

utilization of this catalyst is limited due the fact that TiO2 aggregates rapidly in 

suspension which cause them to losing its surface area as well as the catalytic 

efficiency. Moreover, titania was proven to be unavailable for wider applications 

since it is only active with light radiation with wavelength approximately below 387 

nm. Furthermore, due to the high costs required for separating and recovering these 

particles from the treated water, TiO2 particles is not suitable to be used as the 

photocatalyst in a commercial suspension reactor system. Thus, there is an urgent 

need to develop a photocatalyst with high efficiency in employment of visible light 

irradiation, narrow band gap, stable in operation, and requires relatively low cost for 

the preparation (Guo et al., 2007a).  

 

 

 Iron oxides/oxyhydroxides are relevant in many scientific and technical 

applications and have been widely used in AOP technology. Among them, goethite, 

also known as α–FeOOH, is a type of iron oxyhydroxide with band–gap around 2.2 

eV that seems to be a realistic candidate to be used as photocatalyst for degradation 

of 2–CP (Hu et al., 2012b). It is considered as one of the most environmentally 

friendly catalysts and thermodynamically stable which important upon photocatalysis 

illumination (Prasad et al., 2006). α–FeOOH also combines attractive properties for 

large–scale application such as resistance to photocorrosion, have wide range of 

operating pHs and proven to have almost undetectable leaching of iron into the 

solution.  

 

 

 The commercialized method for the preparation of α–FeOOH was known to 

be precipitation technique. However, this preparation technique may have several 

drawbacks related to longer time consumption, high temperature, and the 

precipitation conditions require extremely careful control (Gupta, 2003b). Therefore, 

it is necessary to find a simple and rapid route for the preparation of α–FeOOH. 

Electrosynthesis is a simple method that has been explored for a few decades for the 

synthesis of nano–sized α–FeOOH. Nano–sized α–FeOOH particles with structures 
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ranging from 1 to 100 nm in size have been shown to have unique physicochemical, 

surface, and optoelectronic properties, as well as excellent visible light photocatalytic 

activity (Ortiz de la Plata et al., 2010c). Regarding these factors, there is an urgent 

need in synthesizing α–FeOOH nanomaterials by electrosynthesis method. 

Previously, gamma phase of FeOOH were successfully synthesized by 

electrosynthesis method as reported by Hashimoto and Cohen (1974). More recent, 

simpler electrolysis method for the preparation of metal nanoparticles was reported 

by Aishah et al., (2002) employing dimethylformamide, naphthalene, and 

triethylammonium phosphate as its electrolyte.  

 

 

 Although electrosynthesis of α–FeOOH have been explored for few decades 

(Jiao et al., 2009), the use of surplus organic solvents urges the needs of investigating 

other alternatives in substituting the conventional solvents. Moreover, small (< 5 nm) 

nanoparticles tend to agglomerate due to high surface energy and the large surface 

area. In these scenarios, surfactant can be an alternative. Surfactants are composed of 

both hydrophilic and hydrophobic groups, with the presence of charged hydrophilic 

component. Cationic surfactants, which contain positive charged ions, have always 

sparked researcher’s interest due to their peculiar and interesting properties which 

include–contrasting hydrophobic and hydrophilic nature; tendency to self associate; 

ability to solubilize both polar as well as non polar components, etc. (Kaur and 

Mehta, 2014). It has abundance of charge–carrying ions which allows its usage as 

solvent without the need for supporting electrolyte. Moreover, cationic surfactants 

has been extensively used as templates in the preparation of various materials as it 

provide electrosteric protection through strongly coordinating protective ligand and 

can be efficiently used as scaffolds for nanostructure materials (Nikoobaht and El–

Sayed, 2001).  

 

 

 Besides the needs of synthesizing iron nanometal, research has been oriented 

to the iron compounds immobilization on different carriers. This is to facilitate iron 

separation and to avoid more complex post–treatments (Feng et al., 2003). Recently 

among commonly employing solid supporters, mesostructure materials have been 

attracted interest as functional carrier due to their high surface area, assessable pore 
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channels, simple pore chemistry and enhanced powder recoverability (Deng et al., 

2011). Moreover, it was proven that mesoporous–assembled structure with 

incorporation of metal catalyst offer better light–induced hydrophilicity, which 

therefore exhibiting higher photocatalytic activities than non–mesoporous–assembled 

catalyst (Puangpetch et al., 2010). 

 

 

 System upscaling is a critical factor in order to demonstrate the practicability 

of synthesized photocatalysis and the catalytic system for environmental 

remediation. The reality of research based photodegradation system is that very few 

systems for laboratory scale test are ultimately viable in terms of industrial scale up 

(McCullagh et al., 2011). Therefore, it is necessary to study the capability of the 

laboratory scale system to be used in pilot scale which will provide the benchmark 

for industrially practicable applications.  

 

 

 

 

1.2 Problem Statement and Hypothesis 

 

 

2–CP have been widely used in agriculture, paper, cosmetic, biocide, public 

health industries and can also be formed as a result of chlorination in water. Because 

of its toxicity, carcinogenicity, yet poor biodegradability, 2–CP is among the priority 

pollutants of major environmental concern. The individual dose requires to kill 50% 

of a population of mice (LD50) values determined indicate that 2–CP is considerably 

more toxic than dichlorophenols (Mozia et al., 2012). Moreover, 2–CP is known to 

be the starting materials to dioxins and furans, the most toxic chemicals ever studied. 

Therefore, it is very important to degrade the 2–CP into harmless species. 

 

 

Various techniques including solvent extraction, membrane filtration, 

adsorption, and biological degradation have been developed for degrading 2–CP 

from waters. However, these techniques suffer from several drawbacks related to 
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high cost, time consuming, and have the possibility of producing secondary 

pollutant. Furthermore, 2–CP do not undergo direct sunlight photolysis in the natural 

environment since they only absorb light below 290 nm. Thus, there are needs in 

searching other possible degradation method and recently, semiconductor–based 

photocatalysis has shown promise in degrading the toxic compounds into innocuous 

inorganic species. 

 

 

 Meanwhile, the commercialized method for preparation of α–FeOOH was 

known to be precipitation technique but it may have several disadvantages related to 

longer time consumption, high temperature, and the precipitation conditions require 

extremely careful control. Therefore, it is necessary to find a simple and rapid route 

for the preparation of α–FeOOH. Although electrosynthesis of α–FeOOH have been 

explored for few decades, the use of surplus organic solvents and the tendency of 

nanoparticles to agglomerate urge the needs of investigating other alternatives in 

substituting the conventional solvents. In these scenarios, cationic surfactant can be 

an alternative.  

 

 

Moreover, the study on the interaction of electrosynthesized metal oxide in 

cationic surfactants with a mesostructured silica nanoparticles support is still rare. 

Although several studies have been conducted to deposit the metal–surfactant 

catalyst onto several supports including clay (Mastalir et al., 2001), metal oxide 

(Sato et al., 2002), and activated carbon (Porta et al., 2002), the interaction between 

the metal oxides and the support material was not well–studied. Moreover, the 

properties of the catalyst are known to be strongly affected by the support, which 

makes it very complicated to understand its reaction mechanism. Thus, detail 

investigation on supported metal catalyst is very crucial. 

 

 

For many iron oxides–based catalysts employed in photo–Fenton–like 

system, the fastest rates in solution were observed at strong acidic pH (Ortiz de la 

Plata et al., 2010a). This selection, however, introduces the need for acidification of 

the reacting medium and subsequent neutralization after treatment. Thus, nearly 
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neutral condition appears as more favorable in employing photo–Fenton–like system 

which suggests an attempt to conduct the system at mild pH condition (Kolata et al., 

1994). On the other hand, insufficient amount or a disproportionate excess of H2O2 

concentration can result in negative effects of the photo–Fenton–like system 

(Burbano et al., 2003). Since the selection of a reduced H2O2 concentration for the 

degradation of pollutants is important from practical point of view due to the cost 

and toxicity (Sun et al., 2007), an attempt is necessary to investigate the behavior of 

the system and to reduce the amount of H2O2 required for efficient degradation. 

 

 

The α–FeOOH and α–FeOOH/MSN catalysts synthesized in cationic 

surfactant was hypothesized to endow extra properties on the characteristics of the 

catalyst which is believed can hinder the electron–hole recombination, as well as 

induce the capability of the catalysts to be used in visible light regions. The high 

surface area of MSN provides well distributions of the iron oxides on the surface of 

MSN besides the ability of MSN to act as an electron acceptor to synergically 

perform with the loaded α–FeOOH to enhance the photodegradation activity. Along 

this line, herewith we proposed to focus on the “Electrosynthesis of goethite 

supported on mesostructured silica nanoparticles in cationic surfactant for 

photodegradation of 2–chlorophenol”. 

 

 

 

 

1.3 Objective of the Study 

 

 

The objectives of this study are: 

 

1. To synthesize and characterize nanosized α–FeOOH and α–

FeOOH/MSN catalysts. 

2. To optimize the photocatalytic degradation of 2–chlorophenol over the 

synthesized catalysts by Response Surface Methodology (RSM).  
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3. To study the degradation mechanism and kinetic modeling of the 

photocatalytic process. 

4. To study the potential of the synthesized catalysts for pilot plant scale 

applications. 

 

 

 

 

1.4 Scope of the Study  

 

 

The scopes of this study consist of four parts which are; 

1. Synthesis and characterize nanosized α–FeOOH and α–FeOOH/MSN 

catalysts 

i. The α–FeOOH was synthesized in cationic surfactant via 

electrosynthesis method in a normal compartment cell fitted with a 

cathode and anode plate at a constant current density of 120 mA cm–2 

under ambient atmosphere at 0°C. The α–FeOOH was also supported 

on mesostructured silica nanoparticles (MSN) to give α–FeOOH/MSN 

catalyst using impregnation method.  

ii. The physicochemical properties of the catalysts were determined by 

different means of characterizations. The crystallographic structure, 

crystallite size, and structural orientation of the prepared catalysts 

were recorded using X–ray diffraction (XRD) analysis. The 

morphological properties and distribution of metal oxides onto 

supportive material were examined using transmission electron 

microscopy (TEM). The vibration information of the catalysts was 

elucidated by Fourier transform infrared (FTIR) spectroscopy. 

Nitrogen adsorption–desorption isotherms (Brunnauer–Emmett–

Teller, BET) was used to obtain the textural properties of catalysts. 

The chemical oxidation state of the catalysts was determined using X–

ray photoelectron spectroscopy (XPS). The chemical environments of 

Si atoms were detected using 29Si magic angle spin nuclear magnetic 
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resonance (29Si MAS NMR). The band gap energy determination of 

the catalysts were studied using ultraviolet–visible diffuse reflectance 

spectroscopy (UV–vis DRS) while the optical properties of the 

catalysts were analysed by photoluminescence spectroscopy (PL). The 

mechanistic pathway for the structure formations were also proposed 

based on the characterizations results. 

 

2. The catalytic activity of the catalysts were tested on photodegradation of 

2–CP in aqueous solution. The screening process was conducted to 

identify crucial process conditions including the effect of metal loading, 

pH, catalyst dosage, H2O2 concentration, 2–CP initial concentration, and 

temperature. Optimization of the photodegradation system was done via 

Response Surface Methodology (RSM) using statistical software package 

Design–Expert, by employing sequence optimization of full factorial 

design and central composite design. 

 

3. The mechanisms of the 2–CP photodegradation over the catalysts were 

studied by using several scavengers. Four types of scavengers were used 

for the system: potassium dichromate (PD); isopropanol (IP); sodium 

oxalate (SO); and potassium iodide (PI), with the role as a scavenger of 

photogenerated electrons, hydroxyl radicals (•OH), photogenerated holes 

(H+), and hydroxyl radicals adsorbed on the catalyst surface (•OHads), 

respectively. The kinetic modeling of the photocatalytic process was 

investigated using Langmuir–Hinshelwood model to accommodate 

reactions occurring at solid–liquid interface. The reaction rate constant 

(KR) and the adsorption equilibrium constant (KLH) were calculated to 

determine the type of reaction occurs during the photodegradation 

process. 

 

4. The potential of the catalysts for applications in pilot scale was studied in 

the aspects of reusability, upscaling feasibility, and degradation ability on 

various pollutants. The reusability of the catalysts were investigated to 

indicate the robustness of the catalysts towards the photodegradation 

process. Repeated experiments were carried out using same operating 
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conditions and the performances of the catalysts at each reaction cycles 

were compared. The feasibility of up–scaled system for photocatalytic 

degradation of 2–CP was investigated using a pilot scale reactor system 

with a 10–fold upscale system of the laboratory scale. Lastly, the potential 

applications of the catalysts to various target pollutants were investigated 

using cationic dye, anionic dye, and phenol.  

 

 

 

 

1.5 Significance of Study  

 

 

In this study, detailed investigation on the 2–CP degradation using α–FeOOH 

and α–FeOOH/MSN catalysts via photo–Fenton–like process was conducted. The 

employment of the photocatalysts to give complete degradation of 2–CP under mild 

operating conditions provide new insight in reducing the use of oxidizing agents 

which normally employed in huge amounts for this catalytic system. This study also 

provides a platform to eliminate the subsequent neutralization process which 

commonly required in most of the 2–CP degradation processes. Furthermore, the 

proposed degradation mechanism using the catalysts offers better understanding of 

the catalytic process employing metal–surfactant catalyst supported on a silica 

material. 

 

 

The simple and rapid route for the synthesis of the catalysts offers new 

alternative to current commercial synthesis process since this electrosynthesis 

method using cationic surfactant as a single electrolyte avoids the surplus use of the 

organic solvents. The study on the mechanistic pathways for the formation of the 

electrosynthesized metal–surfactant catalyst presents additional knowledge in current 

progress in this research area. Moreover, the study on the interaction of 

electrosynthesized metal oxide in cationic surfactants with a mesostructured silica 

nanoparticles support may provide new insight to the current understanding in the 

metal–surfactant field. 
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1.6 Thesis Outline 

 

 

This thesis is divided into five chapters. In Chapter 1, introduction is given 

about the wide usage of phenolic compound and the importance on the degradation 

of the chlorinated phenolic compound, especially 2–chlorophenol which caused 

severe problems to human and environment. Several techniques were reported to 

potentially overcome this problem including physical, biological, and chemical 

treatment. The potential of α–FeOOH and α–FeOOH/MSN as semiconductor for 

photo–Fenton–like process are highlighted. The problem statement of the current 

research was stated which subsequently provide a clear objective of the present 

study. The scope of study covers the research which was done to meet the objectives. 

The significance of research was also clearly mentioned. 

 

 

Chapter 2 or literature review covers the conventional method of 2–CP 

degradation, basic information of 2–CP and characteristics of α–FeOOH and MSN as 

previously studied. The previous studies on photoreactor scaling up also included. 

Chapter 3 or methodology describes the chemicals and materials used in the research 

work, instrumentations, catalysts preparation and characterizations, experimental 

setup, photodegradation testing, and it also includes the procedure for the analysis 

calculations. 

 

 

Chapter 4 concerned with the results and discussion which in further divided 

into seven parts. The first part is synthesis and characterization, followed by the 

photodegradation performance evaluation, optimization of reaction conditions, 

kinetic analysis, reusability study, scaling up system, and the last part is the 

capability study of the catalysts towards various pollutants. The results are presented 

and discussed comprehensively. Finally, Chapter 5 covers the results summary and 

future study. 
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