WELLBORE PRESSURE PREDICTION AFTER PIPE CONNECTION OPERATION IN UNDERBALANCED DRILLING

REZA CHERAGHI KOOTIANI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Petroleum Engineering)

Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia

NOVEMBER 2015

I would like to dedicate this thesis to my family, Iraj, and Javad who have been great inspiration in completing this thesis.

ACKNOWLEDGEMENT

I wish to appreciate first and foremost the Almighty God for his great mercies towards me and his tremendous help in helping me get to this stage of this my academic journey. Without his help I would not have achieved anything. I praise him for all the supply.

My profound many thanks go to my untiring supervisor, Professor Dr. Ariffin Bin Samsuri who has always been there to attend to my inquiries and to give me the necessary supervisory attention required. Your humility has been a huge boost in propelling me to prosecute this research successfully.

I wish to express my profound gratitude to my family. Your encouragement, support and prayers have seen me through this challenging journey. Besides, I would like to thank the authority of Universiti Teknologi Malaysia (UTM) for providing me with a good environment and facilities to complete this project.

ABSTRACT

In underbalanced drilling (UBD), bottom hole pressure (BHP) must be maintained in the defined limit. Maintaining underbalanced drilling conditions after pipe connection operation is required for the success of underbalanced drilling operations. Modeling and simulation of gas-liquid two phase flow in an UBD operation is very significant in order to accurately predict the wellbore pressure and other parameters of two phase flow. After pipe connection operation in UBD, upon restarting mud circulation system, frictional pressure influenced the BHP and the fluid slugs in the drill string are transferred into the annulus. Therefore, the hydrostatic pressure will increase and UBD pipe connection operations create a BHP vibration, which is a critical point. This particular time can reduce the benefits obtained to drill the well in an underbalanced environment. In this study, a mechanistic steady state gas-liquid two phase flow model was used to simulate the two phase flow after pipe connection operation in UBD. Simulation was carried out to predict the parameters; such as wellbore pressure, liquid holdup, and velocities of the two phases at different flow patterns, namely slug, bubble, churn, dispersed bubble, and annular flow. In order to predict wellbore pressure, a steady state model was developed to predict flow patterns, pressure gradient, and liquid holdup for gasliquid flow in vertical annulus and drill string. The model included flow pattern transition models and hydrodynamic models for individual flow pattern. The model equations along with appropriate constitutive relations formed a system of coupled drift flux, momentum, and energy equations, which were solved using the well known iterative Newton Raphson method. All model equations were implemented in a computer program named Fortran 95. The effect of gas and liquid flow rates, and choke pressure on the wellbore pressure, particularly in the BHP was evaluated numerically. In order to validate the results of the developed model, they were compared with actual field data and the results of the WELLFLO software using different mechanistic models. The results revealed that the two phase model developed can accurately predict wellbore pressure, particularly BHP, wellbore temperature, gas/liquid velocities, and two phase flow patterns.

ABSTRAK

Dalam penggerudian imbang bawah (UBD), tekanan dasar lubang (BHP) mesti dikekalkan pada had yang ditetapkan. Pengekalan keadaan penggerudian imbang bawah selepas operasi penyambungan paip adalah diperlukan bagi menjamin kejayaan operasi penggerudian terbabit. Pemodelan dan penyelakuan aliran dua fasa gas-cecair bagi suatu operasi UBD adalah sangat penting bagi meramal secara tepat tekanan lubang telaga dan parameter lain dalam aliran dua fasa. Selepas selesainya operasi penyambungan paip dalam UBD, sebaik sahaja bermulanya semula pengedaran lumpur dalam sistem, tekanan geseran akan mempengaruhi BHP dan slug bendalir di dalam rentetan gerudi akan berubah kedudukan ke anulus. Dengan itu, tekanan hidrostatik akan meningkat dan operasi penyambungan paip dalam UBD menghasilkan getaran BHP yang merupakan suatu titik kritikal. Keadaan ini boleh mengurangkan manfaat yang diperoleh daripada penggerudian telaga dalam persekitaran imbang bawah. Dalam kajian ini, model mekanistik aliran keadaan mantap dua fasa gas-cecair telah digunakan untuk menyelaku aliran dua fasa terbabit selepas operasi penyambungan paip dalam UBD. Penyelakuan dilaksanakan untuk meramal parameter misalnya tekanan lubang telaga, tahanan cecair, dan halaju dua fasa pada pelbagai corak aliran, iaitu slug, gelembung, pusaran, gelembung tersebar, dan anulus. Dalam usaha untuk meramal tekanan lubang telaga, suatu model keadaan mantap telah dibangunkan bagi meramal corak aliran, kecerunan tekanan, dan tahanan cecair untuk aliran gas-cecair di dalam anulus tegak dan rentetan gerudi. Model terbabit merangkumi model peralihan corak aliran dan model hidrodinamik untuk corak aliran yang berlainan. Persamaan model itu berserta dengan hubungan juzuk yang sesuai telah membentuk sistem gandingan fluks sesaran, momentum dan persamaan tenaga yang boleh diselesaikan menerusi penggunaan kaedah lelaran Newton Raphson. Semua persamaan model diaplikasi menggunakan program komputer, Fortran 95. Kesan gas dan kadar aliran cecair serta tekanan pencekik terhadap tekanan lubang telaga terutama dalam BHP dinilai secara berangka. Dalam usaha untuk mengesahkan keputusan model terbabit, semua pencapaiannya dibandingkan dengan data sebenar medan dan hasil daripada perisian WELLFLO yang menggunakan pelbagai model mekanistik. Hasil kajian yang diperoleh menunjukkan bahawa model dua fasa yang dibangunkan boleh meramal secara tepat tekanan lubang telaga terutama BHP, suhu lubang telaga, halaju gas/cecair dan corak aliran dua fasa.

TABLE OF CONTENTS

CHAPTER		TITLE			PAGE
	DECI	LARATI	ON		ii
	DEDICATION				iii
	ACKNOWLEDGMENT ABSTRACT				iv
					v
	ABST	TRAK			vi
	TABI	LE OF C	ONTENT	'S	vii
	LIST	OF TAB	BLES		xii
	LIST	OF FIG	URES		xiv
	LIST	OF ABB	REVIAT	IONS	xvii
	LIST	OF NOM	MENCLA	TURES	xix
	LIST	OF APP	ENDICE	8	xxii
1	INTI	RODUCI	ΓΙΟΝ		1
	1.1	Backgr	ound of St	udy	1
	1.2	Problem	n Statemer	nt	3
	1.3	Researc	ch Objectiv	ve	6
	1.4	Scope of	of Study		7
	1.5	Signific	cance of St	tudy	7
2	LITI	ERATUR	RE REVIE	ΣW	9
	2.1	Underb	alanced D	rilling	9
		2.1.1	Purpose	s of UBD	11
		2.1.2	Underba	lanced Drilling Techniques	14
			2.1.2.1	Selection of Underbalanced Drilling Technique	15

	2.1.3	Limitatio	ons	20
	2.1.4	Equipme Systems	ent in Underbalanced Drilling	21
		2.1.4.1	Surface Equipment	21
		2.1.4.2	Downhole Equipment	23
	2.1.5	Mud Cir	culation Systems	24
	2.1.6	Drill-Str	ing	25
2.2	Two P	hase Flow		26
	2.2.1	Two-Pha	ase Flow Patterns	28
	2.2.2	Two Pha	se Flow Pattern Prediction Models	33
		2.2.2.1	Fluid Properties	33
		2.2.2.2	Velocity Profile	35
		2.2.2.3	Channel Configuration	40
	2.2.3	Underba	lanced Drilling Flow Patterns	44
2.3	Bottom	hole Press	sure Prediction	45
	2.3.1	Manage	Pressure Drilling	47
	2.3.2		diction During UBD Pipe	48
		2.3.2.1	Bottom Hole Pressure Vibrations	48
2.4	Steady	State Mode	els Approach in UBD Operations	51
2.5	Summa	ary of Liter	ature Review	56
MET	HODO	LOGY		60
3.1	Mecha	nistic Stead	ly State Model Development	60
3.2	Compu	iter Program	n	64
3.3	Algorit	hm Steps		67
3.4	Mecha Validat		ly State Model Development	74
	3.4.1	Well Aga	ive 301	74
	3.4.2	Well Mu	spac 53	76
	3.4.3	Well Pars	si70	78
MEC	HANIS	TIC STEA	DY STATE FLOW MODELING	81
4.1	Theory	of Modelin	ng	81

4

3

4.1.1	Gas/Liq	uid Two Phase Flow	81
	4.1.1.1	Two Phase Flow Definition and Basic Parameters	82
4.1.2	Two Pha	ase Flow Concepts	85
4.1.3	Moment	um Equation	89
	4.1.3.1	Frictional Component	91
	4.1.3.2	Gravitational Component	92
	4.1.3.3	Acceleration Component	92
4.1.4	Drift Flu	ıx Model	94
4.1.5	Classific	cation of Fluids and Flow Regimes	95
	4.1.5.1	The Reynolds Number	96
	4.1.5.2	The Fanning Friction Factor	97
4.1.6	Gas- Lic	uid Two Phase Flow Patterns	98
4.1.7	Two Pha	ase Flow Pattern Transition Models	100
	4.1.7.1	Annuli Flow Patterns Prediction Models	100
	4.1.7.2	Drill-String Flow Patterns Prediction Models	106
Steady S	State Mod	el Development	109
4.2.1	Annulus	Bubble Flow Prediction Model	109
4.2.2	Annulus Model	Dispersed Bubble Flow Prediction	111
4.2.3	Annulus	Slug Flow Prediction Model	112
	4.2.3.1	Physical Model of Fully Developed Slug Flow	115
	4.2.3.2	Physical Model of Developing Slug Flow	118
4.2.4	Annulus	Annular Flow Prediction Model	122
4.2.5	Annulus	Churn Flow Prediction Model	127
4.2.6	Drill-str	ing Bubble Flow Prediction Model	128
4.2.7	Drill-stri Model	ing Dispersed Bubble Flow Prediction	128
4.2.8	Drill-str	ing Slug Flow Prediction Model	128
4.2.9	Bit Flow	/ Model	130
Compute	er Prograi	m Algorithm Flowchart	131

4.2

4.3

RES	ULTS AN	ND DISCUSSIONS	133
5.1	Steady	State Model Development Validation	133
	5.1.1	Wellbore Pressure Prediction of Well Agave 301	133
	5.1.2	Wellbore Pressure Prediction of Well Muspac 53	136
	5.1.3	Wellbore Pressure Prediction of Well Parsi70	138
5.2	Two Pł 301	nase Flow Patterns Prediction of Well Agave	139
5.3	Two Pł 53	nase Flow Patterns Prediction of Well Muspac	142
5.4	Two Pł	nase Flow Pattern Maps	144
	5.4.1	Two Phase Flow Pattern Maps of Well Agave 301	144
	5.4.2	Two Phase Flow Pattern Maps of Well Muspac 53	149
5.5	Effect of Pressur	of Drilling Fluid Flow Rate on the Wellbore	153
	5.5.1	Effect of Drilling Fluid Flow Rate on the Wellbore Pressure of Well Agave 301	153
	5.5.2	Effect of Drilling Fluid Flow Rate on the Wellbore Pressure of Well Muspac 53	154
5.6	Effect of	of Drilling Fluid Flow Rate on the Flow Patterns	155
	5.6.1	Effect of Drilling Fluid Flow Rate on the Flow Patterns of Well Agave 301	155
	5.6.2	Effect of Drilling Fluid Flow Rate on the Flow Patterns of Well Muspac 53	157
5.7	Effect of	of N_2 Gas Flow Rate on the Wellbore Pressure	159
	5.7.1	Effect of N ₂ Gas Flow Rate on the Wellbore Pressure of Well Agave 301	159
	5.7.2	Effect of N ₂ Gas Flow Rate on the Wellbore Pressure of Well Muspac 53	160
5.8	Effect of	of N_2 Gas Flow Rate on the Flow Patterns	161
	5.8.1	Effect of N ₂ Gas Flow Rate on the Flow Patterns of Well Agave 301	161
	5.8.2	Effect of N ₂ Gas Flow Rate on the Flow Patterns of Well Muspac 53	164
5.9	Effect of	of Choke Pressure on the Wellbore Pressure	165

5

		5.9.1	Effect of Choke Pressure on the Wellbore Pressure of Well Agave 301	165
		5.9.2	Effect of Choke Pressure on the Wellbore Pressure of Well Muspac 53	166
	5.10	Effect of	f Choke Pressure on the Flow Patterns	167
		5.10.1	Effect of Choke Pressure on the Flow Patterns of Well Agave 301	167
		5.10.2	Effect of Choke Pressure on the Flow Patterns of Well Muspac 53	169
	5.11	Effect of Product	f Bottom Hole Pressure on the Well	171
	5.12	Wellbor Agave 3	e Temperature Predictions of Well	172
	5.13		f N ₂ Gas Flow Rate on the Wellbore ature of Well agave 301	174
	5.14	Determi Require	nation of Minimum Gas Volume ment	175
	5.15	Conclud	ling Remarks	176
6	CON	CLUSIO	NS AND RECOMMENDATIONS	178
	6.1	Conclus	ions	178
	6.2	Recomm	nendations	179
REFEREN	CES			181

Appendices A – E

190 - 310

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Main reasons for UBD operations	12
2.2	Specific advantages and disadvantages in UBD operation	13
2.3	Underbalanced drilling operation candidate	14
2.4	Ability of the various drilling fluids in ROP	16
2.5	Ability of the various drilling fluids in control lost circulation	16
2.6	Ability of the various drilling fluids in control water inflow	17
2.7	Ability of the various drilling fluids in minimize sloughing problems	17
2.8	Ability of the various drilling fluids in hard rock formations	18
2.9	Ability of the various drilling fluids on high pressure zones	18
2.10	Ability of the various drilling fluids on borehole collapse	18
2.11	Characteristics of gaseous and compressible fluids	19
2.12	Categories of limitations for UBD operations	20
2.13	Some of most accepted two-phase flow patterns	28
2.14	Summary of two phase flow pattern literature	43
2.15	Underbalanced drilling flow patterns	44
2.16	Summary of analyzed mechanistic steady state models in UBD	59
3.1	Geometric properties of the drill-string of the well Agave 301	75
3.2	Geometric properties of the annulus of the well Agave 301	76
3.3	Computer program input data of the well Agave 301	76

3.4	Pressure recorded while drilling well Agave 301	76
3.5	Computer program input data of the well Muspac 53	77
3.6	Muspac 53's well geometry of the drill-string	78
3.7	Muspac 53's well geometry of the annulus	78
3.8	Parsi-70 well simulation input data	80
4.1	Constants of velocity profile coefficient and diameter ratio	95
5.1	Wellbore pressure between prediction and field measurements at 2259 m	135
5.2	Absolute percent error of wellbore pressure at 2259 (m) between model predictions and Perez-Tellez model of well Agave 301	136
5.3	Model validation results using field data of well Muspac 53	137
5.4	Bottom hole pressure comparison using Parsi 70's field data	139
5.5	Two phase flow patterns predictions of well Agave 301	140
5.6	Two phase flow patterns predictions of well Muspac 53	143
5.7	Effect of drilling fluid flow rate on the flow patterns of well Agave 301	156
5.8	Effect of drilling fluid flow rate on the flow patterns of well Muspac 53.	158
5.9	Effect of nitrogen gas flow rate on the flow pattern of well Agave 301	163
5.10	Effect of nitrogen gas flow rate on the flow patterns of well Muspac 53	164
5.11	Effect of choke pressure on the flow patterns of well Agave 301	168
5.12	Effect of choke pressure on the flow pattern of well Muspac 53	170
5.13	Effect of BHP on the well production of well Parsi70	172

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Schematic of pipe connection operation during drilling	4
1.2	Typical BHP vibration after pipe connection in UBD	5
2.1	A schematic view of the conventional drilling technology	10
2.2	A schematic view of the underbalanced drilling technology	11
2.3	A closed UBD system using aerated liquid	21
2.4	A schematic of the surface equipment in a nitrogen gas drilling system	22
2.5	A four-phase separator used in UBD operations	22
2.6	A schematic diagram of a rotating BOP	23
2.7	A schematic view of mud circulation system	25
2.8	A schematic view of drill-string	26
2.9	Flow patterns during evaporation in vertical upward flow	32
2.10	Flow pattern map after Perez-Tellez	33
2.11	Typical BHP fluctuations observed during UBD	49
3.1	Methodology flowchart diagram	62
3.2	Discretized wellbore after pipe connection in UBD operation	64
3.3	Discretized flow path in the annulus	66
3.4	Discretized flow path in the drill-string	67
3.5	Annulus computer flow diagram for the steady state model development	70
3.6	Drill-string computer flow diagram for the steady state model development	72
3.7	Schematic diagram of the well Agave 301	75
3.8	Schematic diagram of the well Muspac 53	77

3.9	Parsi oilfields in the Southern part of Iran	79
4.1	Element of duct with separated flow	86
4.2	Gas-liquid flow patterns in annulus	101
4.3	Schematic of FDTB and DTB slug flow	113
4.4	A schematic of hydrodynamic parameters in the FDTB slug flow	114
4.5	A schematic of hydrodynamic parameters in the DTB slug flow	114
4.6	Major features of annular flow	123
4.7	Computer flow diagram for mechanistic steady state model development	132
5.1	Wellbore pressure profile between developed model and measured data of well Agave 301	134
5.2	Wellbore pressure profile between developed model and Perez- Tellez model of well Agave 301	135
5.3	Wellbore pressure predictions between developed model and measured data of well Muspac 53	137
5.4	Wellbore pressure profile between developed model and measured data of well Parsi70	139
5.5	Schematic of two phase flow pattern predictions of well Agave 301	142
5.6	Schematic of two phase flow pattern predictions of well Muspac 53	144
5.7	Variation of liquid velocity of well Agave 301	145
5.8	Variation of gas velocity of well Agave 301	146
5.9	Liquid holdup versus liquid velocity of well Agave 301 using developed model	146
5.10	Gas holdup versus gas velocity of well Agave 301 using developed model	147
5.11	Flow patterns map of well Agave 301 in the annulus	148
5.12	Flow patterns map of well Agave 301 in the drill-string	148
5.13	Variation of liquid velocity in well Muspac 53	149
5.14	Variation of gas velocity in well Muspac 53	150
5.15	Effect of liquid holdup on the liquid velocity	150
5.16	Effect of gas holdup on the gas velocity	151
5.17	Flow pattern map using developed model in the annulus of well Muspac 53.	152

5.18	Flow pattern map using developed model in the drill- string of well Muspac 53	152
5.19	Variation of the wellbore pressure at the various drilling fluid flow rates of well Agave 301	153
5.20	Variation of the wellbore pressure at the various drilling fluid flow rates of well Muspac 53	154
5.21	Flow patterns prediction at the various drilling fluid flow rates of well Agave 301	157
5.22	Schematic of flow pattern predictions at the various drilling fluid flow rates of well Muspac 53	158
5.23	Variation of the wellbore pressure at the various nitrogen gas flow rates of well Agave 301	160
5.24	Variation of the wellbore pressure at the various nitrogen gas flow rates of well Muspac 53	161
5.25	Flow patterns prediction at the various nitrogen gas flow rates of well Agave 301	163
5.26	Schematic of flow pattern predictions of the various nitrogen gas flow rates of well Muspac 53	165
5.27	Variation of the wellbore pressure at the various choke pressure of well Agave 301	166
5.28	Variation of the wellbore pressure at the various choke pressure of well Muspac 53	167
5.29	Flow patterns prediction at the various choke pressure of well Agave 301	169
5.30	Schematic of flow patterns predictions of the various choke pressure of well Muspac 53	170
5.31	Wellbore temperature calculation of well Agave 301	173
5.32	Effect of various gas flow rates on the wellbore temperature of well Agave 301	174
5.33	Minimum gas volume requirement of well Agave 301	176

LIST OF ABBREVIATIONS

Acc	-	Acceleration component
AN	-	Annular flow
В	-	Bubble flow
BOP	-	Blowout preventer
Bh	-	Bottom hole
BHA	-	Bottom hole assembly
BHCP	-	Bottom hole circulation pressure
BHP	-	Bottom hole pressure
Cal	-	Calculation
CFD	-	Computational fluid dynamic
СН	-	Churn flow
DB	-	Dispersed bubble flow
DTB	-	Developed Taylor bubble
DSU	-	Developing slug unit
DTB	-	Developing Taylor bubble
DF	-	Drilling fluid
Ep	-	Equi-periphery
ECD	-	Equivalent circulation density
FDTB	-	Fully developed Taylor bubble
F	-	Film
FT	-	Tubing film
Fric	-	Friction component
G	-	Gas
GC	-	Gas casing
GT	-	Gas tubing
Н	-	Hydraulic
HUBS	-	Hydraulic underbalanced simulator
Hy	-	Gravity component
Ι	-	Axial increment thickness

IC	-	In situ condition or inner casing
IT	-	Inner tubing
L	-	Liquid
LS	-	Liquid slug
LC	-	Liquid holdup in gas core
LF	-	Liquid film
LFC	-	Casing liquid film holdup
LFT	-	Tubing liquid film holdup
LS	-	Slug liquid holdup
LSC	-	Slug liquid holdup corresponding to casing liquid film
MPD	-	Managed pressure drilling
Ν	-	Nozzle
Ν	-	Nitrogen
NG	-	Natural gas
OBD	-	Overbalanced drilling
ОТ	-	Outer tubing
ODE	-	Ordinary differential equation
Р	-	Pipe
R	-	Radius, m
R	-	Reservoir
RBOP	-	Rotating blowout preventer
RCH	-	Rotating control head
ROP	-	Rate of penetration
S	-	Surface
S	-	Slug flow
Sc	-	Standard condition
SG	-	Superficial gas
SL	-	Superficial liquid
SU	-	Slug unit
Т	-	Total or translational
ТВ	-	Taylor bubble
Up	-	Upstream
UBD	-	Underbalanced drilling
W	-	Water or wall
Wp	-	Wellbore pressure

LIST OF NOMENCLATURES

А	-	Area, ft^2 (m ²)
С	-	Constant
C_0	-	Velocity profile coefficient, dimensionless
D	-	Diameter, in (m)
D _e	-	Equivalent pipe diameter, m (in)
D_{ep}	-	Equivalent periphery diameter, m
D_H	-	Hydraulic diameter of flow path, in
e_a	-	Absolute value percentage error (%)
f	-	Friction factor, dimensionless
f_{DF}	-	Drilling fluid fraction
ffh	-	Homogeneous fanning friction factor, dimensionless
f_F	-	Fanning friction factor, dimensionless
f_i	-	Interfacial shear friction factor, dimensionless
F_E	-	Liquid entrainment
f_m	-	Moody friction factor, dimensionless
g	-	Acceleration of gravity, $ft/s^2(m/s^2)$
g_{c}	-	Gravitational conservation constant
Н	-	Reservoir thickness, m (ft)
H_L	-	Liquid holdup, dimensionless
$H_{L_{TB}}$	-	Liquid holdup in the Taylor bubble
$H_{L_{LS}}$	-	Liquid holdup in the liquid slug
$H_{G_{LTB}}$	-	Liquid holdup in the developing Taylor bubble.
K	-	Diameter ratio, dimensionless
l	-	Length, ft (m)
L _C	-	Length of the bubble cap, ft (m)
L_{TB}	-	Length of the Taylor bubble, ft (m)

L_{LS}	-	Length of the liquid slug, ft (m)
L_{SU}	-	Length of the slug unit, ft (m)
L_{dTB}	-	Developing length of the Taylor bubble, ft (m)
L _{dSU}	-	Developing length of the slug unit, ft (m)
М	-	Gas molecular weight (kg/Kmol)
N _{Re}	-	Reynolds number
dp/dz	-	Pressure gradient, psi/ft
Р	-	Pressure, psi
P_{ub}	-	Pressure upstream, psi
P_{bh}	-	Bottom hole pressure, psi
Q	-	Flow rate, m ³ /s (gpm or scfm)
q_L	-	Flow rate of liquid, m ³ /s (gpm or scfm)
q_G	-	Flow rate of gas, m ³ /s (gpm or scfm)
S_g	-	Specific gravity of gas
t	-	Time, sec
Т	-	Temperature, °F or ° K
T_s	-	Surface temperature, °F
и	-	Velocity, m/s
u_G	-	In-situ velocity of gas, m/s
u_L	-	In-situ velocity of liquid, m/s
u_m	-	Mixture velocity, ft/sec (m/s)
u_∞	-	Discrete bubble rise velocity, ft/sec (m/s)
u_{TB}	-	Rise velocity of the Taylor bubble, ft/sec (m/s)
$u_{L_{TB}}$	-	In-situ liquid velocity in the Taylor bubble, ft/sec (m/s)
$u_{L_{TB}}$	-	In-situ liquid velocity in the Taylor bubble, ft/sec (m/s)
$u_{G_{LS}}$	-	In-situ gas velocity in the liquid slug, ft/sec (m/s)
$u_{L_{LS}}$	-	In-situ liquid velocity in the liquid slug, ft/sec (m/s)
$u_{G_{DTB}}$	-	In-situ gas velocity in the developing Taylor bubble, ft/sec (m/s)
$u_{L_{DTB}}$	-	In-situ liquid velocity in the developing Taylor bubble, ft/sec (m/s)
u _n	-	Nozzle velocity, m/s
V	-	Volume, m ³
$V_{L_{TB}}$	-	Liquid volume in Taylor bubble, m ³

$V_{L_{LS}}$	-	Liquid volume in liquid slug, m ³
W	-	Weight fraction
Ζ	-	Compressibility factor, dimensionless
Ζ	-	Axial direction

Greek Letters

α	-	Gas volumetric fraction, dimensionless
β	-	Relative bubble length parameter, dimensionless
∞	-	Discrete bubble
λ	-	No-slip holdup, dimensionless
μ	-	Viscosity, Pa.s (cp)
μ_L	-	Viscosity of liquid, Pa.s (cp)
μ_G	-	Viscosity of gas, Pa.s (cp)
ρ	-	Density, kg/m ³
σ	-	Interfacial tension, N/m
δ	-	Film thickness, m
Δ	-	Increment
τ	-	Shear stress, Pa (psi)
$ au_i$	-	Interfacial shear, Pa (psi)
ε	-	Roughness, m
ν	-	Specific gravity, m ³ /kg
$ ho_m$	-	Mixture density, lb/ft ³
$ ho_G$	-	Gas density, lb/ft ³
$ ho_L$	-	Liquid density, lb/ft ³
ΔP	-	Pressure drop, psi
Δt_{TB}	-	Passing time of Taylor bubble, sec
Δt_{LS}	-	Passing time of liquid slug, sec

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
A	Definition and basic parameters of two phase flow	190	
В	Computer program for the development model	197	
С	Development prediction model results for Agave 301 well	206	
D	Development prediction model results for Muspac 53 Well	264	
E	Development prediction model results for Parsi 70 Well	304	

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Underbalanced drilling method is determined as drilling process in which the pressure of wellbore is lower than the formation pressure in the open hole section. The UBD system is designed to operate with pressure of wellbore below the pressure of formation. The pressure underbalanced connote that if porous and permeable formations are exposed, the reservoir fluids will enter the wellbore while drilling. In overbalanced drilling operation well control is influenced by using a hydrostatic pressure higher than the formation pressure. In UBD, this differential is eliminated and wellbore pressure is kept less the formation pressure. Thus, there is a concept of well control condition during the UBD technology. The benefits of UBD technique encompass the followings: less differential sticking, improve penetration rate, reduce formation damage, and early production.

When there are equipment failures, mismanaging of drilling fluids, poor reservoir selection, and human mistake then underbalanced drilling method failed. The underbalanced drilling technology is gaining in amicability as drilling method to dominate some of the problems faced in overbalanced drilling. Underbalanced drilling method is adopted for solving drilling problems and it also can minimize formation damage. UBD technology has improvement of oil and gas formations that otherwise would not be exploited due to the technical and economic limitations. It is also a tool both for formation performance development and formation characterization as well as for remarking drilling problems. Underbalanced drilling operation is considered to be more expensive than conventional drilling. Even though UBD technique is more expensive than conventional drilling, it has some advantages over the conventional drilling technology. Some of these advantages include early production of hydrocarbons and quick recovery of cost expended on it (UBD technique).

Generally, decrease of the hydrostatic pressure in the annular decreases the fluid losses into a reservoir formation. In underbalanced drilling operation, the bottom hole pressure must be deliberately below the pressure of formation, therefore, the fluid losses do not appear there during drilling underbalanced. Due to the lack of overburden on the reservoir formation and the absence of any filter cake, the drill string will be prevented from differential sticking while drilling underbalanced. The reduction of the overpressure over the pressure of formation has a considerable effect on the rate of penetration. It also has an affirmative impact on the bit life due to the less weight on the drilling bit.

The applications of UBD technique comprise the followings: aerated liquid, stable foam, and gas or air drilling. When liquid is combined with air/gas drilling, the drilling fluid becomes mist or unstable foam. The limitations of UBD technology comprise the followings: liquid influx problems, wellbore stability, safety and economic problems, and directional drilling problems. In some formations, when the wellbore is not stable, the underbalanced drilling cannot be used because it is not economically feasible. The surface equipment requirements of underbalanced drilling technology encompass the following: downstream choke-manifold system, wellhead rotating control device, upstream gas generation systems, geologic sampler, and open/close fluid handling systems. When the formation is exceedingly depleted, an upstream gas generation would be required.

During UBD operation in which the formation pressure is greater than hydrostatic pressure of fluids in wellbore may make a condition such as a kick. So, controlling and predicting the pressures and maintain assured environment need specific surface pressure control equipment and a group of crew who are satisfactorily educated. The kind of necessary items relies on mainly the lithology, permeabilities, and formation pressures. In under balanced drilling technique, a complex fluid system appears in the drill-string and the annulus. In underbalanced drilling operation, the well bore pressure control is obtained by conducting the well returns through surface choke pressure.

Production of formation fluids during UBD are separated by separation tanks at the well head. Therefore, the regular rotary rig must be adjusted for under balanced drilling operation with some significant adjustment. Controlling the flow pressure at the bottom-hole is the key parameter in the success of the UBD operation. If the BHP becomes greater than the formation pressure, the UBD changes to overbalanced drilling (OBD) and if the BHP becomes too lower than the formation pressure this may lead to kicking of the well or may cause the wall well collapse. Therefore, the bottom-hole pressure should be kept in a specific pressure limits known as pressure window. Keeping BHP in the window limits is more difficult than the over-balanced drilling because a specific ratio of two fluids (gas and liquid) should be continuously injected in the well to reach the desired BHP which depends mainly on the formation pressure and the choke pressure.

1.2 Problem Statement

The emergence of UBD technology can be used to avoid complicated drilling problems, such as reservoir damage and circulation loss. The success of a UBD operation is subdominant of the ability to keep up underbalanced situations during the whole drilling operation and this underbalanced pressure condition is needed to be maintained by bottom-hole pressure control according to specific operating conditions and actual status of fluid in wellbore. In underbalanced drilling operations with regular rigs, drilling fluids are pumped down through the drill-string, getting through the bit nozzle, and then going up in the annular space. In the annular, drilling fluids are mixed with drilling cuttings and formation fluids. Therefore, underbalanced hydraulic circulating system is typically determined by two or more phases. When a pipe moves up and down along the axis of a wellbore filled with a nonmoving fluid, friction pressure losses are induced. The main concern in friction pressure losses due to pipe movement is related to the annulus section. During pipe connection operation in UBD, the mud circulation system has to be stopped. Therefore, bottom hole pressure decreases at the beginning due to the losses frictional pressure. The stop of mud circulation causes the disruption of steady state conditions. Due to buoyancy and inertial forces the gas phases moves upward and the liquid phases flow downward.

In underbalanced drilling pipe connection operation, the process involved to stop circulation and pull out of hole the entire drill-string, making connection at the surface after which running in hole with new connection. After bottom hole assembly (BHA) touch bottom, start circulation, and continue drilling. At this stage, an annulus pressure will increase as surge pressure. Figure 1.1 indicates a schematic of the pipe connection operation. Therefore, after pipe connection is defined as a time gap between BHA touch bottom and recirculating start.

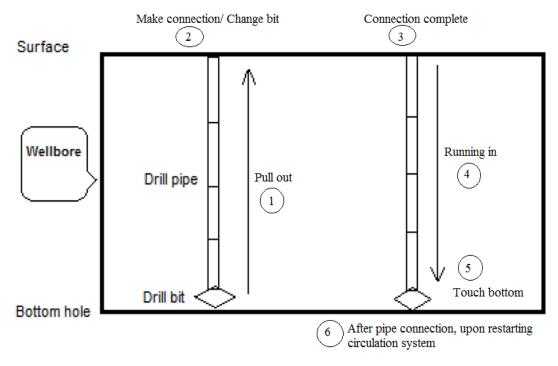
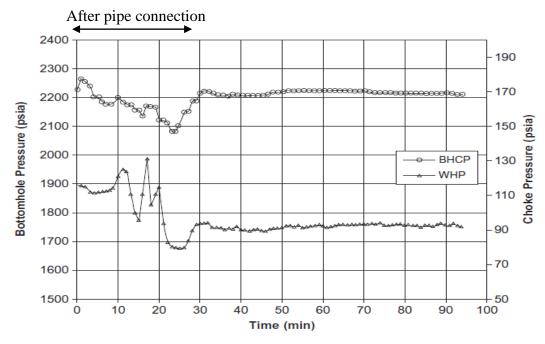



Figure 1.1 Schematic of pipe connection operation during drilling

After pipe connection operation in UBD, upon restarting mud circulation system, frictional pressure influenced the BHP and the fluid slugs in the drill-string are transferred into the annular space. Therefore, the hydrostatic pressure will be increasing. Since this event occurs after pipe connection operation, and the period between drilling and pipe connection is inadequate to obtain steady situations again, underbalanced drilling pipe connection operations create a bottom hole pressure vibration. If the bottom hole pressure vibration is not properly maintained below the pressure of formation, the reservoir formation will lead to an OBD condition after pipe connection operation. Consequently, after pipe connection in UBD a pressure spike is observed with a short period of sustaining higher BHP that usually exposes the formation to overbalanced conditions. This particular time can reduce the benefits obtained to drill the well underbalanced. Therefore, the foundation of UBD analysis and study is to establish mechanistic steady state two phase flow model to predict wellbore pressure. As shown in Figure 1.2 the BHP vibrations recorded after pipe connection operation upon restarting circulation system in underbalanced drilling operation. It's also shown that changing a choke pressure setting may also cause severe vibrations in the BHP.

Figure 1.2 Typical BHP vibration after pipe connection in UBD (Guo and Liu, 2011).

The key factor for a successful UBD operation is to achieve the objectives through maintaining underbalanced drilling condition. In order to achieve such success, the bottom hole pressure should be maintained within a pressure window that is bounded below by the formation pore pressure and above the wellbore stability pressure or surface facilities restrictions. Hence, the prediction of wellbore pressure should be as accurate as possible in order to assist in designing equipment needed to UBD operations. Recently, development of mechanistic models has allowed accurate prediction of wellbore pressure. Mechanistic models are based on the physical phenomena of the complex fluid system and flow rather than the use of empirical correlations, which are based mainly on experimental data.

Therefore, it seems that one should use better mechanistic steady state model for two phase flow in which a set of partial differential equations are used to describe the physics of the flow. This research is the study in which the mechanistic steady state two-phase flow through the annulus, bit nozzles, and drill-string is used to simulate flow behavior in the UBD operation. Two phase flow patterns in the annulus and drill-string, wellbore pressure predictions, gas/liquid superficial velocities in the wellbore, liquid and gas holdup, two phase flow pattern maps, wellbore temperatures, and minimum gas volume requirement in the wellbore are presented accordingly. The performance of the development model is validating with field data and previous works. In this steady state two phase flow model development, two phases are considered as the two interpenetrating continua. Steady state two phase flow model development has a high potential for the analysis of twophase flows and has extensively been used in modeling different two-phase flow.

1.3 Research Objective

In this study, the main objective is to predict BHP after pipe connection operation in UBD in which mud circulation system restarts. The details of objective encompass the followings:

- i. To develop mechanistic steady state model for two phase flow through the annulus and drill-string.
- ii. To predict BHP after pipe connection operation in UBD.
- iii. To review two phase flow patterns in UBD operation.
- iv. To analyze the effect of the choke pressure and gas/liquid flow rate on the BHP.

1.4 Scope of Study

In this study, the bottom hole pressure prediction is based on the outcomes of a mechanistic steady state model development by developing analytical equations using fundamental laws of physics and mathematics to predict the wellbore pressure and BHP, the flow behavior, flow patterns and their transitional boundaries for two phase flow (gas-liquid) through drill-sting, bit nozzle and in the annular space. In flowing, effects of gas/liquid flow rate recharges and also choke pressures change on pressure and flow patterns are defined. Then this model equation, based on drift flux model is defined and computer program by means of Fortran 95 will be developed. The following simplifications have been adopted in order to establish flow model in UBD: (i) It is a steady state model and can only simulate an established situation; (ii) The drilled cuttings are transported at the same velocity in the annulus as the liquid phase; (iii) The cross section of the wellbore is circular and concentric with drillstring; (iv) The gas resolution in drilling fluid is negligible and there is no chemical reaction; (v) The \cdot gas and liquid medium is in thermodynamics balanced status, and pressure and density is single valued function; (vi) No fluid production from reservoirs are considered.

1.5 Significance of Study

Previous steady state gas-liquid two-phase models in UBD operations fall into three categories. The first is the steady state computer programs that neglect slip

between phases by assuming that aerated mud can be treated as a homogeneous mixture. The second is the steady state computer programs that used empirical correlations to take into account slip between phases and predict different flow patterns. The third is the steady state computer programs based on mechanistic models rather than empirical correlations to take into account slip between phases and predict different flow patterns. Most studies on UBD models focused on the first and the second types of models in the recent years. Validations show that lowers prediction accuracy than the accuracy needed in practical operations. The mechanistic approach postulates the existence of different flow configurations and formulates separate models for each one of these flow patterns to predict the main parameters, such as gas fraction, two phase flow patterns, and wellbore pressure. Consequently, mechanistic steady state two phase flow models, rather than empirical correlations, have been used with increasing frequency for the design of multiphase wellbore pressure system. But, the previous studies did not use mechanistic models to reach good accuracy of wellbore pressure and two phase flow parameters in the annulus and drill-string during underbalanced drilling operation. Therefore, there is a need to predict wellbore pressure in the annulus and drill-string during underbalanced drilling operation using mechanistic steady state two phase flow model. This research is the study in which the mechanistic steady state two phase flow model is used to predict wellbore pressure in the annulus and drill-string in the underbalanced drilling operation. Furthermore, two phase flow patterns, flow pattern maps, void fraction, wellbore temperature, and minimum gas volume requirement in the annulus and drill-string are presented. In addition, the effects on bottom-hole pressure of different back pressures at the wellhead, gas and liquid injection flow rate are simulated and analysed. The flow patterns used in the research include five types: bubble flow, dispersed bubble flow, churn flow, annular flow, and slug flow according to the configurations of two phase flow in the wellbore. Computational methods for gas void fraction and pressure drop are presented in each flow pattern respectively.

REFERENCES

- Al-Ajmi, A. M., & Zimmerman, R. W. (2006). Stability Analysis of Vertical Boreholes Using the Mogi–Coulomb Failure Criterion. International Journal of Rock Mechanics and Mining Sciences. 43(8), 1200–1211.
- ALAdwani, F. A. (2003). Mechanistic Modeling of an Underbalanced Drilling Operation Utilizing Supercritical Carbon Dioxide. Kuwait University.
- Al-Safran, E., Owayed, J. F., Al-Bazali, T., & Sunthankar, A. (2008). Optimization of Required Volumetric Flow Rates for Aerated Mud Underbalanced Drilling. Petroleum Science and Technology. 26(12), 1403–1423.
- Ashena, R., Moghadasi, J., Ashena, R., Roshanai, F., Sarmadivaleh, M., & Safian, G. (2010). Mechanistic Modeling of Annular Two-Phase Flow While Underbalanced Drilling in Iran. In Nigeria Annual International Conference and Exhibition. January. Nigeria: Society of Petroleum Engineers.
- Ashena, R., & Moghadasi, J. (2011). Bottomhole Pressure Estimation Using Evolved Neural Networks by Real Coded ant Colony Optimization and Genetic Algorithm. *Journal of Petroleum Science and Engineering*. 77(3-4), 375–385.
- Azar, J. J., & Samuel, G. R. (2007). Drilling Engineering. PennWell Books.
- Azzopardi, B. J., & Wren, E. (2004). What is Entrainment in Vertical Two-phase Churn Flow?. *International Journal of Multiphase Flow*. 30(1), 89-103.
- Azzopardi, B., & Hills, J. (2003a). One Dimensional Models for Pressure Drop, Empirical Equations for Void Fraction and Frictional Pressure Prop and Pressure Drop and Other Effects in Fittings. Springer Vienna.
- Azzopardi, B. J. (2006). Gas-Liquid Flows. New York: Begell House. 6-40.
- Azzopardi, B., & Hills, J. (2003b). Flow Patterns, Transitions and Models for Specific Flow Patterns. Springer Vienna.

- Azzopardi, B., Zhao, D., Yan, Y., Morvan, H., Mudde, R. F., & Lo, S. (2011). *Hydrodynamics of Gas-liquid Reactors: Normal Operation and Upset Conditions.* John Wiley & Sons.
- Azzopardi, B. J. (2008). Flow patterns: Does Gas/Solids Flow Pattern Correspond to Churn Flow in Gas/Liquid Flow. *Industrial & Engineering Chemistry Research*. 47(20), 7934-7939.
- Bratland, O. (2010). Pipe Flow 2, Multiphase Flow Assurance. 41 39.
- Brauner, N., & Ullmann, A. (2002). Modeling of Phase Inversion Phenomenon in Two-phase Pipe Flows. *International Journal of Multiphase Flow*. 28(7), 1177-1204.
- Brauner, N., & Ullmann, A. (2004). Modelling of Gas Entrainment from Taylor bubbles. Part A: Slug flow. *International Journal of Multiphase Flow*. 30(3), 239-272.
- Celata, G. P. (2008). Single-and Two-phase Flow Heat Transfer in Micropipes. *In Fifth European Thermal-Sciences Conference*. Eindhoven, the Netherlands.
- Celata, G. P., Lorenzini, M., Morini, G. L., & Zummo, G. (2009). Friction Factor in Micropipe Gas Flow Under Laminar, Transition and Turbulent Flow Regime. *International Journal of Heat and Fluid Flow*. 30(5), 814-822.
- Cheng, H., Hills, J. H., & Azzopardi, B. J. (2002). Effects of Initial Bubble Size on Flow Pattern Transition in a 28.9 mm Diameter Column. *International Journal* of Multiphase Flow. 28(6), 1047-1062.
- Cheng, R. C., Wang, H. G., Ge, Y. H., Cui, M., Drilling, C., & Ma, G. Z. (2010). SPE 131844 New Development and Application of Underbalanced Drilling Technology in China : A Critical Review UBD Application Status of CNPC.
- Chung, P. Y., & Kawaji, M. (2004). The Effect of Channel Diameter on Adiabatic Two-phase Flow Characteristics in Microchannels. *International Journal of Multiphase Flow*. 30(7), 735-761.
- Church, O. S., & Road, B. (2002). Introduction to Underbalanced Drilling. 1–51.
- Coddington, P., & Macian, R. (2002). A Study of the Performance of Void Fraction Correlations Used in the Context of Drift-Flux Two-Phase Flow Models. *Nuclear Engineering and Design*, 215(3), 199-216.
- Das, A. K. (2007). Simulation Study Evaluating Alternative Initial responses to Formation Fluid Influx During Managed Pressure Drilling. Open University.

- Dorenbos, R., & Ranalho, J. (2002). *Underbalanced Drilling Primer*. Shell International Exploration and Production BV.
- El Hajal, J., Thome, J. R., & Cavallini, A. (2003). Condensation in Horizontal Tubes, Part 1: Two-phase Flow Pattern Map. *International Journal of Heat and Mass Transfer*. 46(18), 3349-3363.
- Fattah, K. A., El-Katatney, S. M., & Dahab, A. A. (2011). Potential Implementation of Underbalanced Drilling Technique in Egyptian Oil Fields. *Journal of King Saud University - Engineering Sciences*, 23(1), 49–66.
- Feili Monfared, A., Ranjbar, M., Nezamabadi-Poor, H., Schaffie, M., & Ashena, R. (2011). Development of a Neural Fuzzy System for Advanced Prediction of Bottomhole Circulating Pressure in Underbalanced Drilling Operations. *Petroleum Science and Technology*. 29(21), 2282–2292.
- Finley, D., Ansah, J., Gil, I., Lovorn, R., Shayegi, S., & Services, H. E. (2007). IADC / SPE 108350 Comparisons of Reservoir Knowledge, Drilling Benefits, and Economic Advantages for Underbalanced and Managed-Pressure Drilling.
- Gao, B., Guo, C., Hou, X., Yang, C., Zeng, Y., & Zhang, J. (2007). Automatic Control System and Method for Bottomhole Pressure in the Underbalance Drilling. Patent and Trademark Office.
- Goda, H., Hibiki, T., Kim, S., Ishii, M., & Uhle, J. (2003). Drift-Flux Model for Downward Two-Phase Flow. *International Journal of Heat and Mass Transfer*, 46(25), 4835-4844.
- Groth, C., & Zingg, D. W. (2006). Computational Fluid Dynamics. Proceedings of the Third International Conference on Computational Fluid Dynamics, ICCFD3, Toronto. 12-16 July 2004. Springer.
- Guang-xin, Z. Y. C. W., Yu-fang, Z. H. J. J., & Lu-cai, T. I. A. N. (2003). Application of Underbalanced Drilling Technology in Weishen-5Well of Daqing Oilfield. Acta Petrolei Sinica, 6(21).
- Guet, S., Ooms, G., & Oliemans, R. V. A. (2002). Influence of Bubble Size on the Transition From Low-Re Bubbly Flow to Slug Flow in a Vertical Pipe. *Experimental Thermal and Fluid Science*. 26(6), 635-641.
- Guo, B., & Ghalambor, A. (2002). An Innovation in Designing Underbalanced Drilling Flow Rates: A Gas-Liquid Rate Window (GLRW) Approach. IADC/SPE Asia Pacific Drilling Technology.

- Guo, B., Lyons, W.C., & Ghalambor, A. (2011). Petroleum Production Engineering, A Computer-Assisted Approach. Amsterdam: Gulf Professional Publishing.
- Guo, B., & Liu, G. (2011). Applied Drilling Circulation Systems Hydraulics, Calculations and Models. Amsterdam: Gulf Professional Publishing. 4-6.
- Guo, W., Honghai, F., & Gang, L. (2011). Design and Calculation of a MPD Model with Constant Bottomhole Pressure. *Petroleum Exploration and Development*, 38(1), 103–108.
- Hasan, A. R., Kabir, C. S., & Sarica, C. (2002). Fluid Flow and Heat Transfer in Wellbores. Society of Petroleum Engineers.
- Hibiki, T., & Ishii, M. (2002). Distribution Parameter and Drift Velocity of Drift-Flux Model in Bubbly Flow. *International Journal of Heat and Mass Transfer*, 45(4), 707-721.
- Hooshmandkoochi, A., Zaferanieh, M., & Malekzadeh, A. (2007). First Application of Underbalanced Drilling in Fractured Carbonate Formations of Iranian Oilfields Leads to Operational Success and Cost Savings. *In SPE Middle East Oil and Gas Show and Conference*. Society of Petroleum Engineers.
- Hong, W. P., TENG, F. Y., & LIU, Y. (2013). Analysis of Complexity and Chaos Morphological Characteristics of Gas-Liquid Flow's Differential Pressure Fluctuation Signal across Tube Bundles. *Control and Instruments in Chemical Industry*. 2, 021.
- Irani, R., & Nasimi, R. (2011). Application of Artificial Bee Colony-Based Neural Network in Bottomhole Pressure Prediction in Underbalanced Drilling. *Journal* of Petroleum Science and Engineering. 78(1), 6–12.
- Ismail, I., Misnan, S., Ismail, A. S. I., & Mohsin, R. (2014, July). Flow Pattern Map of Malaysian Crude Oil and Water Two-Phase Flow in a Pipe System. In Advanced Materials Research. 931. 1243-1247.
- Ismail, A. S. I., Ismail, I., Zoveidavianpoor, M., Mohsin, R., Piroozian, A., Misnan, M. S., & Sariman, M. Z. (2015). Experimental Investigation of Oil–Water Two-Phase Flow in Horizontal Pipes: Pressure Losses, Liquid Holdup and Flow Patterns. *Journal of Petroleum Science and Engineering*, 127, 409-420.
- Johnson, R. L., Montilva, J. C., Sati, M. F., Grable, J. L., Saeed, S., Billa, R. J., & Derise, B. (2011). Field Demonstration of a New Method for Making Drill-Pipe Connections during Managed-Pressure Drilling Operations. SPE147278.

- Kabir, M., Saloussy, E., Al-sabea, S., Ambastha, A., & Qutob, H. (2008). OTC 19313 Kuwait Oil Company Employs a Systematic Approach to Ensure Successful Underbalanced Drilling Project : A Case Study.
- Kawahara, A., Chung, P. Y., & Kawaji, M. (2002). Investigation of Two-phase Flow Pattern, Void Fraction and Pressure Drop in a Microchannel. *International Journal of Multiphase Flow*. 28(9), 1411-1435.
- Kawahara, A., Sadatomi, M., Okayama, K., Kawaji, M., & Chung, P. Y. (2005). Effects of Channel Diameter and Liquid Properties on Void Fraction in Adiabatic Two-phase Flow Through Microchannels. *Heat Transfer Engineering*. 26(3), 13-19.
- Kaya, A. S., Sarica, C., & Brill, J. P. (2001). Mechanistic Modeling of Two-Phase Flow in Deviated Wells. SPE Production & Facilities. 16(03), 156-165.
- Krepper, E., Lucas, D., & Prasser, H. M. (2005). On the Modelling of Bubbly Flow in Vertical Pipes. *Nuclear Engineering and Design*. 235(5), 597-611.
- Khezrian, M., Hajidavalloo, E., & Shekari, Y. (2014). Modeling and Simulation of Under-balanced Drilling Operation Using Two-Fluid Model of Two-Phase Flow. *Chemical Engineering Research and Design*, 1–8.
- Lage, A.C.V.M., Time, R. . (2002). An Experimental and Theoretical Investigation of Upward Two-Phase Flow in Annuli. *SPE64525*.
- Lage, A. C. V. M., Rommetveit, R., & Time, R. W. (2000). An Experimental and Theoretical Study of Two-Phase Flow in Horizontal or Slightly Deviated Fully Eccentric annuli. *IADC/SPE Asia Pacific Drilling Technology*. 11- 13 September, Kuala Lumpur, Malaysia.
- Lage, A.C.V.M., Time, R. (2000). Mechanistic Model for Upward Two-Phase Flow in Annuli. SPE63127.
- Lange, V., Azzopardi, B. J., & Licence, P. (2013). Hydrodynamics of Ionic Liquids in Bubble Columns.
- Lapeyrouse, N. J. (2002). Formulas and Calculations for Drilling, Production, and Workover. Gulf Professional Publishing.
- Li, J., Luft, B. H., Wilde, G., Alingig, G., & Jumawid, F. (2008). Cleanouts with Coiled Tubing in Low-Bottomhole-Pressure Wellbores. In SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition. Society of Petroleum Engineers. 1- 2 April, the Woodlands, Texas, USA.

- Liu, G., Hu, Z., Li, J., & Tao, Q. (2009). Bottomhole Pressure Control Method in Pressure-Control Drilling. Oil Drilling & Production Technology. 2(006).
- Lyons, W. C. (2009). Air and Gas Drilling Manual: Applications for Oil and Gas Recovery Wells and Geothermal Fluids Recovery Wells. Gulf Professional Publishing.
- Metin, C. O., & Ozbayoglu, M. E. (2007). Analysis of Two-Phase Fluid Flow Through Fully Eccentric Horizontal Annuli. British Hydromechanics Research (BHR) Group. In 13th International Conference on Multhiphase Production Technology, 13-15 June, Edinburgh, UK.
- Nygaard, G. H., Vefring, E. H., Fjelde, K. K., Nævdal, G., Lorentzen, R. J., & Mylvaganam, S. (2004). Bottomhole Pressure Control During Pipe Connection in Gas-Dominant Wells. *In SPE/IADC Underbalanced Technology Conference and Exhibition*. Society of Petroleum Engineers. 11- 12 October, Houston, Texas.
- Omebere-Iyari, N. K., Azzopardi, B. J., Lucas, D., Beyer, M., & Prasser, H. M. (2008). The Characteristics of Gas/Liquid Flow in Large Risers at High Pressures. *International Journal of Multiphase Flow*. 34(5), 461-476.
- Osgouei, R. E., Ozbayoglu, M. E., Ozbayoglu, a. M. (2012). A Mechannistic Model to Characterize the Two Phase Drilling Fluid Flow through Inclined Eccentric Annular Geometry. *SPE155147*.
- Ostroot, K., Shayegi, S., Lewis, D., Lovorn, R., & Services, H. E. (2007). OTC 18561 Comparison and Advantages of Underbalanced and Managed-Pressure Drilling Techniques : When Should Each Be Applied ?
- Ozbayoglu, M. E., & Ozbayoglu, M. A. (2007). Flow pattern and frictional-pressureloss estimation using neural networks for UBD operations. In IADC/SPE Managed Pressure Drilling & Underbalanced Operations.
- Paasche, M., Johansen, T. A., & Imsland, L. (2011). Regularized and Adaptive Nonlinear Moving Horizon Estimation of Bottomhole Pressure during Oil Well Drilling.
- Perez-Tellez, C. (2003). Improved Bottom-hole Pressure Control for Underbalanced Drilling Operations. Louisiana State University.
- Perez-tellez, C. Smith, J. R, Edvards, J. K. (2003). A New Comprehensive Mechanistic Model for Underbalanced Drilling Improves Wellbore Pressure Predictions. SPE74426.

- Prasser, H. M., Scholz, D., & Zippe, C. (2001). Bubble Size Measurement Using Wire-Mesh Sensors. *Flow Measurement and Instrumentation*. 12(4), 299-312.
- Qutob, H. H., & Ferreira, H. (2005). The SURE Way to Underbalanced Drilling. In In SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers.
- Rehm, B., Haghshenas, A., Paknejad, A. S., Al-Yami, A., & Hughes, J. (2013). *Underbalanced Drilling: Limits and Extremes*. Elsevier.
- Sawai, T., Kaji, M., Kasugai, T., Nakashima, H., & Mori, T. (2004). Gas–liquid Interfacial Structure and Pressure Drop Characteristics of Churn Flow. *Experimental Thermal and Fluid Science*. 28(6), 597-606.
- Serizawa, A., & Feng, Z. (2000). Review of Two-Phase Flow in Microchannels. In Proceedings of the US–Japan Seminar on Two-Phase Flow Dynamics, june Santa Barbara, California, US.
- Serizawa, A., Feng, Z., & Kawara, Z. (2002). Two-phase Flow in Microchannels. *Experimental Thermal and Fluid Science*. 26(6), 703-714.
- Shadravan, A., Nabaei, M., Yrc, O. B., & Amani, M. (2009a). Dealing with the Challenges of UBD Implementation in Southern Iranian Oilfields. *In the Middle East Drilling Technology Conference & Exhabition*. 26-28 October. Manama, Bahrain (3), 1–10.
- Shadravan, A. (2009). Dealing with the Challenges of UBD Implementation in Southern Iranian Oilfield. Behelor Degree, Islamic Azad University, Omidieh Btanch, Iran.
- Shadravan, A., Nabaei, M., & Amani, M. (2009b). Development of Underbalanced Drilling Implementation in Parsi Oilfield. In Offshore Europe Oil & Gas Conference & Exhibition. 8-11 September. Aberdeen, UK.
- Shadravan, A., Khodadadian, M. Shahbazi, K. and Roohi, A. (2009c). Underbalanced Drilling Technology, the Key for Solving Drilling Problems. In the *First International Petroleum Conference & Exhibition*. 4-6 May. Shiraz, Iran.
- Sheu, G. R., Lin, N. H., Wang, J. L., Lee, C. T., Ou Yang, C. F., & Wang, S. H. (2010). Temporal Distribution and Potential Sources of Atmospheric Mercury Measured at a High-Elevation Background Station in Taiwan. *Atmospheric Environment*. 44(20), 2393-2400.

- Shirkavand, F., Hareland, G., & Olson, W. (2010). The Design and Development of a Drilling Simulator for Planning and Optimizing Under-Balanced Drilling Operations. *Journal of Canadian Petroleum Technology*. 49(6), 68-73.
- Shoham, O. (2006). Mechanistic Modeling of Gas-liquid Two-phase Flow in Pipes. Society of Petroleum Engineers. pipes, 222 Published Creek Drive Richardson, TX 75080- 2040, USA.
- Sorgun, M., Osgouei, R. E., Ozbayoglu, M. E., & Ozbayoglu, a. M. (2013). An Experimental and Numerical Study of Two-phase Flow in Horizontal Eccentric Annuli. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects*. 35(10), 891–899.
- Sui, D., Nybø, R., Giulio, G., Davide, R., & Mario, H. (2012). A Moving Horizon Observer for Estimation of Bottomhole Pressure During Drilling. Automatic Control in Offshore Oil and Gas Production.
- Tabatabai, A., & Faghri, A. (2001). A New Two-phase Flow Map and Transition Boundary Accounting for Surface Tension Effects in Horizontal Miniature and Micro Tubes. *Journal of Heat Transfer*. 123(5), 958-968.
- Thome, J. R., & Hajal, J. E. (2003). Two-phase Flow Pattern Map for Evaporation in Horizontal Tubes, latest version. *Heat Tansfer Engineering*. 24(6), 3-10.
- Thome, J. R., El Hajal, J., & Cavallini, A. (2003). Condensation in horizontal tubes, part 2: New Heat Transfer Model Based on Flow Regimes. *International Journal of Heat and Mass Transfer*, 46(18), 3365-3387.
- Tzotzi, C., Bontozoglou, V., Andritsos, N., & Vlachogiannis, M. (2010). Effect of Fluid Properties on Flow Patterns in Two-Phase Gas- Liquid Flow in Horizontal and Downward Pipes[†]. *Industrial & Engineering Chemistry Research*, 50(2), 645-655.
- WELLFLO Software. (2011). 8th .ed. Scandpower Petroleum Technology (SPT) Group.
- Williams, M., Lewis, D., & Bernard, C. J. (2003). A Safe Approach to Drilling Underbalanced Starts with Project Management. In SPE/IADC Middle East Drilling Technology Conference and Exhibition. Society of Petroleum Engineers.
- Xu, J., Shen, S., Gan, Y., Li, Y., Zhang, W., & Su, Q. (2005). Transient Flow Pattern Based Microscale Boiling Heat Transfer Mechanisms. *Journal of Micromechanics and Microengineering*. 15(6), 1344.

- Yingcao, Z., Deli, G., Hongjun, Z., & Guangxin, W. (2004). Application of Underbalanced Drilling Technology in Exploratory Wells of Daqing. *Oil Drilling & Production Technology*. 4, 000.
- Yu, T. T., Zhang, H., Li, M. X., & Sarica, C. (2010). A Mechanistic Model for Gas / Liquid Flow in Upward Vertical Annuli, October, 4–7.
- Zhang, H. Q., Wang, Q., Sarica, C., & Brill, J. P. (2003a). Unified Model for Gas-Liquid Pipe Flow via Slug Dynamics part 1: model development. *Journal of Energy Resources Technology*. 125(4), 266-273.
- Zhang, H. Q., Wang, Q., Sarica, C., & Brill, J. P. (2003b). A Unified Mechanistic Model for Slug Liquid Holdup and Transition Between Slug and Dispersed Bubble Flows. *International Journal of Multiphase Flow*. 29(1), 97-107.
- Zhao, K., Scherer, P. W., Hajiloo, S. A., & Dalton, P. (2004). Effect of Anatomy on Human Nasal Air Flow and Odorant Transport Patterns, Implications for Olfaction. *Chemical Senses*. 29(5), 365-379.