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ABSTRACT 

 

 

 

 

In underbalanced drilling (UBD), bottom hole pressure (BHP) must be 

maintained in the defined limit. Maintaining underbalanced drilling conditions after 

pipe connection operation is required for the success of underbalanced drilling 

operations. Modeling and simulation of gas-liquid two phase flow in an UBD 

operation is very significant in order to accurately predict the wellbore pressure and 

other parameters of two phase flow. After pipe connection operation in UBD, upon 

restarting mud circulation system, frictional pressure influenced the BHP and the 

fluid slugs in the drill string are transferred into the annulus. Therefore, the 

hydrostatic pressure will increase and UBD pipe connection operations create a BHP 

vibration, which is a critical point. This particular time can reduce the benefits 

obtained to drill the well in an underbalanced environment. In this study, a 

mechanistic steady state gas-liquid two phase flow model was used to simulate the 

two phase flow after pipe connection operation in UBD. Simulation was carried out 

to predict the parameters; such as wellbore pressure, liquid holdup, and velocities of 

the two phases at different flow patterns, namely slug, bubble, churn, dispersed 

bubble, and annular flow. In order to predict wellbore pressure, a steady state model 

was developed to predict flow patterns, pressure gradient, and liquid holdup for gas-

liquid flow in vertical annulus and drill string. The model included flow pattern 

transition models and hydrodynamic models for individual flow pattern. The model 

equations along with appropriate constitutive relations formed a system of coupled 

drift flux, momentum, and energy equations, which were solved using the well 

known iterative Newton Raphson method. All model equations were implemented in 

a computer program named Fortran 95. The effect of gas and liquid flow rates, and 

choke pressure on the wellbore pressure, particularly in the BHP was evaluated 

numerically. In order to validate the results of the developed model, they were 

compared with actual field data and the results of the WELLFLO software using 

different mechanistic models. The results revealed that the two phase model 

developed can accurately predict wellbore pressure, particularly BHP, wellbore 

temperature, gas/liquid velocities, and two phase flow patterns.   
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ABSTRAK 

 

 

 

 

Dalam penggerudian imbang bawah (UBD), tekanan dasar lubang (BHP) 

mesti dikekalkan pada had yang ditetapkan. Pengekalan keadaan penggerudian 

imbang bawah selepas operasi penyambungan paip adalah diperlukan bagi menjamin 

kejayaan operasi penggerudian terbabit. Pemodelan dan penyelakuan aliran dua fasa 

gas-cecair bagi suatu operasi UBD adalah sangat penting bagi meramal secara tepat 

tekanan lubang telaga dan parameter lain dalam aliran dua fasa. Selepas selesainya 

operasi penyambungan paip dalam UBD, sebaik sahaja bermulanya semula  

pengedaran lumpur dalam sistem, tekanan geseran akan mempengaruhi BHP dan  

slug bendalir di dalam rentetan gerudi akan berubah kedudukan ke anulus. Dengan 

itu, tekanan hidrostatik akan meningkat dan operasi penyambungan paip dalam UBD 

menghasilkan getaran BHP yang merupakan suatu titik kritikal. Keadaan ini boleh 

mengurangkan manfaat yang diperoleh daripada penggerudian telaga dalam 

persekitaran imbang bawah. Dalam kajian ini, model mekanistik aliran keadaan 

mantap dua fasa gas-cecair telah digunakan untuk menyelaku aliran dua fasa terbabit 

selepas operasi penyambungan paip dalam UBD. Penyelakuan dilaksanakan untuk 

meramal parameter misalnya tekanan lubang telaga, tahanan cecair, dan halaju dua 

fasa pada pelbagai corak aliran, iaitu slug, gelembung, pusaran, gelembung tersebar, 

dan anulus. Dalam usaha untuk meramal tekanan lubang telaga, suatu model keadaan 

mantap telah dibangunkan bagi meramal corak aliran, kecerunan tekanan, dan 

tahanan cecair untuk aliran gas-cecair di dalam anulus tegak dan rentetan gerudi. 

Model terbabit merangkumi model peralihan corak aliran dan model hidrodinamik 

untuk corak aliran yang berlainan. Persamaan model itu berserta dengan hubungan 

juzuk yang sesuai telah membentuk sistem gandingan fluks sesaran, momentum dan 

persamaan tenaga yang boleh diselesaikan menerusi penggunaan kaedah lelaran 

Newton Raphson. Semua persamaan model diaplikasi menggunakan program 

komputer, Fortran 95. Kesan gas dan kadar aliran cecair serta tekanan pencekik 

terhadap tekanan lubang telaga terutama dalam BHP dinilai secara berangka. Dalam 

usaha untuk mengesahkan keputusan model terbabit, semua pencapaiannya 

dibandingkan dengan data sebenar medan dan hasil daripada perisian WELLFLO 

yang menggunakan pelbagai model mekanistik. Hasil kajian yang diperoleh 

menunjukkan bahawa model dua fasa yang dibangunkan boleh meramal secara tepat 

tekanan lubang telaga terutama BHP, suhu lubang telaga, halaju gas/cecair dan corak 

aliran dua fasa.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Underbalanced drilling method is determined as drilling process in which the 

pressure of wellbore is lower than the formation pressure in the open hole section. 

The UBD system is designed to operate with pressure of wellbore below the pressure 

of formation. The pressure underbalanced connote that if porous and permeable 

formations are exposed, the reservoir fluids will enter the wellbore while drilling. In 

overbalanced drilling operation well control is influenced by using a hydrostatic 

pressure higher than the formation pressure. In UBD, this differential is eliminated 

and wellbore pressure is kept less the formation pressure. Thus, there is a concept of 

well control condition during the UBD technology. The benefits of UBD technique 

encompass the followings: less differential sticking, improve penetration rate, reduce 

formation damage, and early production.  

 

 

When there are equipment failures, mismanaging of drilling fluids, poor 

reservoir selection, and human mistake then underbalanced drilling method failed.  

The underbalanced drilling technology is gaining in amicability as drilling method to 

dominate some of the problems faced in overbalanced drilling. Underbalanced 

drilling method is adopted for solving drilling problems and it also can minimize 

formation damage. UBD technology has improvement of oil and gas formations that 

otherwise would not be exploited due to the technical and economic limitations.  It is 

also a tool both for formation performance development and formation 
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characterization as well as for remarking drilling problems. Underbalanced drilling 

operation is considered to be more expensive than conventional drilling. Even though 

UBD technique is more expensive than conventional drilling, it has some advantages 

over the conventional drilling technology. Some of these advantages include early 

production of hydrocarbons and quick recovery of cost expended on it (UBD 

technique).  

 

 

Generally, decrease of the hydrostatic pressure in the annular decreases the 

fluid losses into a reservoir formation. In underbalanced drilling operation, the 

bottom hole pressure must be deliberately below the pressure of formation, therefore, 

the fluid losses do not appear there during drilling underbalanced. Due to the lack of 

overburden on the reservoir formation and the absence of any filter cake, the drill 

string will be prevented from differential sticking while drilling underbalanced.  The 

reduction of the overpressure over the pressure of formation has a considerable effect 

on the rate of penetration. It also has an affirmative impact on the bit life due to the 

less weight on the drilling bit.   

 

 

The applications of UBD technique comprise the followings: aerated liquid, 

stable foam, and gas or air drilling. When liquid is combined with air/gas drilling, the 

drilling fluid becomes mist or unstable foam. The limitations of UBD technology 

comprise the followings: liquid influx problems, wellbore stability, safety and 

economic problems, and directional drilling problems. In some formations, when the 

wellbore is not stable, the underbalanced drilling cannot be used because it is not 

economically feasible. The surface equipment requirements of underbalanced drilling 

technology encompass the following: downstream choke-manifold system, wellhead 

rotating control device, upstream gas generation systems, geologic sampler, and 

open/close fluid handling systems. When the formation is exceedingly depleted, an 

upstream gas generation would be required.    

 

 

During UBD operation in which the formation pressure is greater than 

hydrostatic pressure of fluids in wellbore may make a condition such as a kick. So, 

controlling and predicting the pressures and maintain assured environment need 
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specific surface pressure control equipment and a group of crew who are 

satisfactorily educated. The kind of necessary items relies on mainly the lithology, 

permeabilities, and formation pressures. In under balanced drilling technique, a 

complex fluid system appears in the drill-string and the annulus. In underbalanced 

drilling operation, the well bore pressure control is obtained by conducting the well 

returns through surface choke pressure.  

 

 

Production of formation fluids during UBD are separated by separation tanks 

at the well head. Therefore, the regular rotary rig must be adjusted for under 

balanced drilling operation with some significant adjustment. Controlling the flow 

pressure at the bottom-hole is the key parameter in the success of the UBD operation. 

If the BHP becomes greater than the formation pressure, the UBD changes to over-

balanced drilling (OBD) and if the BHP becomes too lower than the formation 

pressure this may lead to kicking of the well or may cause the wall well collapse. 

Therefore, the bottom-hole pressure should be kept in a specific pressure limits 

known as pressure window. Keeping BHP in the window limits is more difficult than 

the over-balanced drilling because a specific ratio of two fluids (gas and liquid) 

should be continuously injected in the well to reach the desired BHP which depends 

mainly on the formation pressure and the choke pressure.  

 

 

 

 

1.2 Problem Statement 

 

 

The emergence of UBD technology can be used to avoid complicated drilling 

problems, such as reservoir damage and circulation loss. The success of a UBD 

operation is subdominant of the ability to keep up underbalanced situations during 

the whole drilling operation and this underbalanced pressure condition is needed to 

be maintained by bottom-hole pressure control according to specific operating 

conditions and actual status of fluid in wellbore. In underbalanced drilling operations 

with regular rigs, drilling fluids are pumped down through the drill-string, getting 

through the bit nozzle, and then going up in the annular space. In the annular, drilling 

fluids are mixed with drilling cuttings and formation fluids. Therefore, 
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underbalanced hydraulic circulating system is typically determined by two or more 

phases. When a pipe moves up and down along the axis of a wellbore filled with a 

nonmoving fluid, friction pressure losses are induced. The main concern in friction 

pressure losses due to pipe movement is related to the annulus section. During pipe 

connection operation in UBD, the mud circulation system has to be stopped. 

Therefore, bottom hole pressure decreases at the beginning due to the losses 

frictional pressure. The stop of mud circulation causes the disruption of steady state 

conditions. Due to buoyancy and inertial forces the gas phases moves upward and the 

liquid phases flow downward. 

 

 

In underbalanced drilling pipe connection operation, the process involved to 

stop circulation and pull out of hole the entire drill-string, making connection at the 

surface after which running in hole with new connection. After bottom hole assembly 

(BHA) touch bottom, start circulation, and continue drilling. At this stage, an annulus 

pressure will increase as surge pressure. Figure 1.1 indicates a schematic of the pipe 

connection operation. Therefore, after pipe connection is defined as a time gap 

between BHA touch bottom and recirculating start.  

 

 

        Figure 1.1    Schematic of pipe connection operation during drilling  
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After pipe connection operation in UBD, upon restarting mud circulation 

system, frictional pressure influenced the BHP and the fluid slugs in the drill-string 

are transferred into the annular space. Therefore, the hydrostatic pressure will be 

increasing. Since this event occurs after pipe connection operation, and the period 

between drilling and pipe connection is inadequate to obtain steady situations again, 

underbalanced drilling pipe connection operations create a bottom hole pressure 

vibration. If the bottom hole pressure vibration is not properly maintained below the 

pressure of formation, the reservoir formation will lead to an OBD condition after 

pipe connection operation. Consequently, after pipe connection in UBD a pressure 

spike is observed with a short period of sustaining higher BHP that usually exposes 

the formation to overbalanced conditions. This particular time can reduce the 

benefits obtained to drill the well underbalanced. Therefore, the foundation of UBD 

analysis and study is to establish mechanistic steady state two phase flow model to 

predict wellbore pressure. As shown in Figure 1.2 the BHP vibrations recorded after 

pipe connection operation upon restarting circulation system in underbalanced 

drilling operation. It’s also shown that changing a choke pressure setting may also 

cause severe vibrations in the BHP.  

 

 

               After pipe connection  

 

Figure 1.2    Typical BHP vibration after pipe connection in UBD (Guo and Liu, 

2011). 
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The key factor for a successful UBD operation is to achieve the objectives 

through maintaining underbalanced drilling condition. In order to achieve such 

success, the bottom hole pressure should be maintained within a pressure window 

that is bounded below by the formation pore pressure and above the wellbore 

stability pressure or surface facilities restrictions. Hence, the prediction of wellbore 

pressure should be as accurate as possible in order to assist in designing equipment 

needed to UBD operations. Recently, development of mechanistic models has 

allowed accurate prediction of wellbore pressure. Mechanistic models are based on 

the physical phenomena of the complex fluid system and flow rather than the use of 

empirical correlations, which are based mainly on experimental data.   

 

 

Therefore, it seems that one should use better mechanistic steady state model 

for two phase flow in which a set of partial differential equations are used to describe 

the physics of the flow. This research is the study in which the mechanistic steady 

state two-phase flow through the annulus, bit nozzles, and drill-string is used to 

simulate flow behavior in the UBD operation. Two phase flow patterns in the 

annulus and drill-string, wellbore pressure predictions, gas/liquid superficial 

velocities in the wellbore, liquid and gas holdup, two phase flow pattern maps, 

wellbore temperatures, and minimum gas volume requirement in the wellbore are 

presented accordingly. The performance of the development model is validating with 

field data and previous works. In this steady state two phase flow model 

development, two phases are considered as the two interpenetrating continua. Steady 

state two phase flow model development has a high potential for the analysis of two-

phase flows and has extensively been used in modeling different two-phase flow. 

 

 

 

 

1.3 Research Objective  

 

 

In this study, the main objective is to predict BHP after pipe connection 

operation in UBD in which mud circulation system restarts. The details of objective 

encompass the followings: 
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i. To develop mechanistic steady state model for two phase flow through 

the annulus and drill-string. 

ii. To predict BHP after pipe connection operation in UBD. 

iii. To review two phase flow patterns in UBD operation. 

iv. To analyze the effect of the choke pressure and gas/liquid flow rate on the 

BHP.  

 

 

 

 

1.4 Scope of Study 

 

 

In this study, the bottom hole pressure prediction is based on the outcomes of 

a mechanistic steady state model development by developing analytical equations 

using fundamental laws of physics and mathematics to predict the wellbore pressure 

and BHP, the flow behavior, flow patterns and their transitional boundaries for two 

phase flow (gas-liquid) through drill-sting, bit nozzle and in the annular space. In 

flowing, effects of gas/liquid flow rate recharges and also choke pressures change on 

pressure and flow patterns are defined. Then this model equation, based on drift flux 

model is defined and computer program by means of Fortran 95 will be developed. 

The following simplifications have been adopted in order to establish flow model in 

UBD: (i)·It is a steady state model and can only simulate an established situation; (ii) 

The drilled cuttings are transported at the same velocity in the annulus as the liquid 

phase; (iii) The cross section of the wellbore is circular and concentric with drill-

string; (iv) The gas resolution in drilling fluid is negligible and there is no chemical 

reaction; (v) The ·gas and liquid medium is in thermodynamics balanced status, and 

pressure and density is single valued function; (vi) No fluid production from 

reservoirs are considered. 

 

 

 

 

1.5 Significance of Study  

 

 

Previous steady state gas-liquid two-phase models in UBD operations fall 

into three categories. The first is the steady state computer programs that neglect slip 
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between phases by assuming that aerated mud can be treated as a homogeneous 

mixture. The second is the steady state computer programs that used empirical 

correlations to take into account slip between phases and predict different flow 

patterns. The third is the steady state computer programs based on mechanistic 

models rather than empirical correlations to take into account slip between phases 

and predict different flow patterns. Most studies on UBD models focused on the first 

and the second types of models in the recent years. Validations show that lowers 

prediction accuracy than the accuracy needed in practical operations. The 

mechanistic approach postulates the existence of different flow configurations and 

formulates separate models for each one of these flow patterns to predict the main 

parameters, such as gas fraction, two phase flow patterns, and wellbore pressure. 

Consequently, mechanistic steady state two phase flow models, rather than empirical 

correlations, have been used with increasing frequency for the design of multiphase 

wellbore pressure system. But, the previous studies did not use mechanistic models 

to reach good accuracy of wellbore pressure and two phase flow parameters in the 

annulus and drill-string during underbalanced drilling operation. Therefore, there is a 

need to predict wellbore pressure in the annulus and drill-string during 

underbalanced drilling operation using mechanistic steady state two phase flow 

model. This research is the study in which the mechanistic steady state two phase 

flow model is used to predict wellbore pressure in the annulus and drill-string in the 

underbalanced drilling operation. Furthermore, two phase flow patterns, flow pattern 

maps, void fraction, wellbore temperature, and minimum gas volume requirement in 

the annulus and drill-string are presented. In addition, the effects on bottom-hole 

pressure of different back pressures at the wellhead, gas and liquid injection flow rate 

are simulated and analysed. The flow patterns used in the research include five types: 

bubble flow, dispersed bubble flow, churn flow, annular flow, and slug flow 

according to the configurations of two phase flow in the wellbore. Computational 

methods for gas void fraction and pressure drop are presented in each flow pattern 

respectively. 
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