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ABSTRACT

Water contamination with boron is currently increasing due to its multiple 
uses in various chemical industries and this poses threats to the environment and 
human health.  Removal of boron by ion exchange resin is the most suitable 
technology but it is challenged by high cost of resins and slow kinetics. To 
overcome this problem, a new fibrous adsorbent containing glucamine for removal 
of boron from solutions was prepared by radiation induced graft copolymerization 
(RIGC) of vinylbenzyl chloride (VBC) onto nylon-6 fibers followed by 
functionalisation with N-methyl-D-glucamine (NMDG).  The best combination of 
grafting parameters required for achieving the highest degree of grafting (DG) was 
determined. The density of glucamine loaded in the adsorbent was tuned by 
optimisation of the reaction parameters using response surface methodology (RSM) 
employing Box–Behnken design (BBD). The obtained adsorbent was characterized 
using various materials and analytical research techniques (scanning electron 
microscopy (SEM), Fourier transform infrared spectrometer (FTIR), X-ray 
diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric 
analysis (TGA) and mechanical tester) to confirm the incorporation of poly(VBC) 
and glucamine groups and to evaluate the impact of preparation procedure on the 
adsorbent’s physico-mechanical properties. The performance of the fibrous 
adsorbent under various conditions pertaining to equilibrium isotherms, kinetics and 
thermodynamics of boron adsorption from aqueous solutions were evaluated using 
relevant models.  The DG was found to be a function of reaction parameters and 
could be tuned to 130% at 20 wt% VBC concentration in methanol, 300 kGy 
absorbed dose, 30 °C and 3 h.  The optimum parameters for achieving a glucamine 
density of 1.7 mmol/g in the adsorbent are 10.6%, 81 oC, 47 min and 121% for 
NMDG concentration, reaction temperature, reaction time and DG, respectively.  
The deviation between the optimum experimental and predicted glucamine density is 
found to be 1.2% suggesting the reliability of RSM in predicting the yield and 
optimising the functionalisation reaction parameters.  The boron adsorption 
equilibrium followed Redlich-Peterson isotherm.  Moreover, the adsorption is 
governed by a film diffusion mechanism and occurs spontaneously.  The results of 
this study suggest that a new fibrous adsorbent having a higher adsorption capacity 
and faster kinetics than commercial granular resin is obtained and has the potential
application in boron removal from aqueous solutions.
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ABSTRAK

Pencemaran air dengan boron pada masa ini semakin meningkat kerana
pelbagai kegunaan dalam pelbagai industri kimia dan ini menimbulkan ancaman
kepada alam sekitar dan kesihatan manusia.  Penyingkiran boron dengan resin
pertukaran ion adalah teknologi yang paling sesuai tetapi ia dicabar oleh kos resin 
yang tinggi dan kinetik yang perlahan. Untuk mengatasi masalah ini, penjerap 
gentian baru yang mengandungi glukamina untuk penyingkiran boron dari larutan 
telah dihasilkan dengan kaedah pengkopolimeran cangkuk aruhan sinaran.  Vinil 
benzil klorida (VBC) dicangkukkan ke atas gentian nilon-6 dan diikuti pengfungsian
dengan N-metil-D-glukamina (NMDG).  Kombinasi parameter terbaik cangkukan 
diperlukan untuk mencapai kadar cangkukan (DG) yang tertinggi telah ditentukan.  
Ketumpatan glukamina dimuatkan ke atas gentian cangkukan ditalakan dengan 
mengoptimumkan parameter reaksi menggunakan kaedah gerak balas permukaan 
(RSM) reka bentuk Box-Behnken (BBD).  Penjerap gentian yang diperoleh dicirikan 
dengan menggunakan pelbagai bahan dan teknik penyelidikan analisis (mikroskop 
pengimbasan elektron (SEM), spektrometer transformasi Fourier inframerah (FT-
IR), spektrometer pembelauan sinar-X (XRD), kalorimetri pengimbasan pembezaan 
(DSC), analisis termogravimetri (TGA) dan penguji mekanikal) untuk mengesahkan 
pembentukan poli(VBC) dan kumpulan glukamina serta menilai impak prosedur 
penyediaan ke atas sifat fiziko-mekanikal penjerap.  Prestasi penjerap gentian di 
bawah pelbagai keadaan berhubung dengan keseimbangan isoterma, kinetik dan 
termodinamik penyerapan boron dari larutan akueus telah dinilai dengan 
menggunakan model berkaitan.  Kadar cangkukan didapati berfungsi dengan 
parameter reaksi dan boleh ditala kepada 130% pada kepekatan VBC 20% dalam 
metanol, 300 kGy dos terserap, 30 oC dan 3 jam.  Parameter-parameter yang 
optimum untuk mencapai ketumpatan glukamina 1.7 mmol/g dalam penjerap adalah 
masing-masing 10.6%, 81 oC, 47 minit dan 121% untuk kepekatan NMDG, suhu 
tindak balas, masa tindak balas dan DG.  Sisihan ketumpatan glukamina antara 
eksperimen optimum dan ramalan didapati 1.2% mencadangkan kebolehpercayaan 
RSM dalam meramal hasil dan mengoptimumkan parameter reaksi pengfungsian 
NMDG.  Keseimbangan penjerapan boron adalah mengikut isoterma Redlich-
Peterson.  Selain itu, penjerapan boron dikawal oleh mekanisma lapisan difusi dan 
boleh berlaku secara spontan.  Hasil kajian ini mencadangkan bahawa penjerap 
gentian terbaru mempunyai kapasiti penjerapan yang lebih tinggi dan kinetik lebih 
cepat berbanding resin butiran komersial, diperoleh dan berpotensi untuk 
diaplikasikan dalam penyingkiran boron daripada larutan akueus.  
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CHAPTER 1

1.1 Background

          Boron is widely distributed in the lithosphere and hydrosphere  in a relatively 

low concentration depending on the geological composition and geographical 

location [1,2]. In nature, boron does not exist in an elemental state and elemental 

boron also does not have any commercial importance. Particularly, boron is always 

found bound to oxygen and other elements to form boric acid or borates (inorganic 

salts) that have commercial importance. Almost 90% of boron consumption by 

industry worldwide comprise of four borates minerals namely, colemanite, kernite, 

tincal and ulecite [3].

Boron is very soluble and mobilised by natural weathering reactions of rocks 

and soils containing borate minerals. Therefore, the natural occurring of boron and 

its concentration found in various water bodies depend on location. For example, 

boron concentration as high as 7 mg/L in surface water bodies has been reported in 

Russian and Turkey as compared to average boron concentration of 0.5 mg/L in 

other places. Boron concentration in the Mediterranean Sea can reach 9.6 mg/L as 

compared to average boron concentration in seawater at 4-5 mg/L [4,5].    

Complete removal of boron from food chains will result in boron deficiency 

and a slightly higher consumption of boron leads to toxicity in the living organisms. 

The range of boron deficiency and toxicity to the plants are very narrow [6,7]. For 
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example, irrigation waters with 0.5 mg/L boron can promote growth of plants, while 

concentration at 1 mg/L causes toxicity and productivity of crop to reduce [8,9].

Boron is needed as micronutrients for human and animals. It is also required 

for various metabolisms of macro nutrients in the organs. For example, the 

deficiency of boron can cause reduction in the adsorption of calcium and magnesium 

[10]. On the other hand, the consumption of boron at high concentration can lead to 

toxicity and damage to the organs [11,12]. Due to the advese impact of boron to 

living organisms, it is necessary to reduce the concentration of boron in waters.  

Currently, research on boron removal from wastewater is receiving an 

increasing attention to meeting the wastewater discharge standards set by 

environmental authorities in various countries. Different techniques have been 

utilized to treat a variety of streams with different boron contents. Conventional 

methods do not significantly remove boron. Only ion exchange technology is found 

to be the most effective and efficient method to remove boron from waters and 

wastewaters to low desired levels [13-21]. Boron selective resins is the heart of ion 

exchange process where boron adsorption takes place in a column that provides a 

continuous mode of operation or otherwise resins are used on a batch basis in 

continuous stirred tanks [22]. The batch adsorption study is used to study the 

interaction of adsorbate and adsorbent. The data obtained is used to establish the 

adsorption isotherm, kinetics, and thermodynamics of boron adsorption.  

The performance limitations of commercial resins have triggered a research 

interest for developing new alternative adsorbents with improved performance 

marked by high adsorption capacity and fast adsorption kinetics.  Considering the 

physical form of the adsorbent/resins, adsorption of heavy metal ions on adsorbents 

having fibrous structure was found to be more efficient than granular resins [23].

Radiation induced graft copolymerization (RIGC) is an effective polymer 

modification technique that has received the most interest for developing adsorbents 

for removal or recovery of metals from solutions [24]. This is because it versatility 

in allowing polymeric materials of any forms (fiber, fabric and membrane) to be 

modified with variety of function groups in large quantities [25]. Thus, substrate 
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polymer with strong physical and mechanical properties can be selected to prepare 

adsorbents with desired ionic groups. Moreover, the use of RIGC in preparation of 

adsorbents allows tuning the content of the functional groups through a facile 

chemical route.  

In principle, the RIGC is a reaction that starts by exposing a polymer 

substrate to high-energy radiation such as γ-rays (from Co-60) and accelerated 

electrons (from electron beam accelerator (EB)) which leads to formation of radicals 

(active sites). The reaction is initiated when monomer molecules are introduced 

leading to formation of macroradicals, which propagate forming graft growing 

chains [26]. There are three methods for RIGC to proceed with: pre-irradiation, 

simultaneous and peroxidation methods. In pre-irradiation method, polymer 

substrate is irradiated under vacuum or inert condition to produce free radicals, 

which is trapped by freezing.  The reaction proceeds on the irradiated polymer by 

adding a monomer at an elevated temperature.  In simultaneous method, the polymer 

is irradiated together with the monomer leading to formation of free radicals on both 

of them and the copolymerization reaction proceeds in a competition with 

homopolymerization.  Peroxidation method is similar to the pre-irradiation under 

inert atmosphere but it differs in the irradiation step, which is normally carried in the 

presence of air or oxygen.  

The yield of grafting or the amount of monomer grafted onto the polymer 

backbone is controlled by the reaction parameters such as irradiation dose, monomer 

concentration, type of solvents, reaction temperature and time [26,27]. The degree 

of grafting (DG) required to prepare a good adsorbent is ranged between 100–200 % 

and this can be obtained by optimisation of the grafting reaction parameters [28]. If 

the grafted monomer does not have function group, it forms an adsorbent precursor, 

which can be chemically modified in a post grafting reaction to impart ionic moiety. 

The selection of the functional group depends on the target ionic pollutants to be 

removed. For example, the N-methyl-D-glucamine (NMDG) functional group is 

selected for making boron-selective resins and adsorbents because of its strong 

affinity towards boron ions in solutions [21,29].
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The polymers used as substrate for RIGC can be divided into two categories. 

First, synthetic polymers such as polyethylene (PE), polypropylene (PP) and nylon 

are selected as substrates for various adsorbents due to their cheap cost, abundance 

mechanical integrity and good reactivity in the grafting system [21,30]. Secondly, 

natural polymers such as starch and chitosan have weak chemical and thermal 

properties and therefore, they are less likely to be used for making adsorbents as their 

structural backbone degrade and become unstable when exposed to radiation during 

preparation and harsh chemical environment during application.

Among synthetic polymers nylon-6 fibers have excellent characteristics of 

textural properties, mechanical strength, chemical and thermal stability [21,31].

Despite the exposure of nylon-6 fibers to a high irradiation dose and reaction with 

various solvents during preparation procedure, they retain a great deal of their 

physical and mechanical properties, which make them favorable for development of 

adsorbents for water treatment and other environmental application.

1.2 Problem Statement

Boron is consumed by many industries and these activities contribute to the 

increase in the concentration and complexity of boron found in surface water or 

wastewater. In Malaysia, wastewater generated from ceramic industry contains a 

high concentration of boron. Leachate from the integrated scheduled waste 

treatment facility operated by Kualiti Alam Sdn Bhd also contains a high boron 

concentration of up to 100 ppm. Due to the adverse health impact of boron to the 

living things, the contamination of boron found in wastewater needs to be removed 

and controlled to comply with the legislation requirement by Malaysian Department 

of Environment (DOE) with the limit of 1 and 4 mg/L for effluent discharge 

standards A and B, respectively (Environmental Quality Act, 1974).  

Currently, commercial resins show high selectivity towards boron. However, 

they have relatively low adsorption capacity and slow adsorption kinetics both of 

which have adversely affected the performance of boron removal system and its 
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economy. In addition, the loss of capacity upon scaling up and after each 

regeneration cycle, the limited surface areas, uncontrollable pore structures and 

hydrophobicity characteristic of the resins have resulted in unsatisfactory 

performance of the commercial resins. Therefore, development of new, highly boron 

selective adsorbents, with high adsorption capacity and fast adsorption kinetics is 

highly needed to effectively enhance the performance of the ion exchange process 

for boron removal and eliminate the problems associated with commercial granular 

resins.

Selective adsorbents having fibrous structure have been found to be more 

efficient in ions removal compared to granular resins. Fibrous adsorbents with a 

diameter of 50 μm and below could be obtained compared to commercial granular 

resins, which have particle diameters of above 300 μm. This gives faster adsorption 

kinetic and higher boron uptake capacity upon using fibrous adsorbents. The fibrous 

structure also could reduce the loss of applied pressure when the adsorbent is applied 

in a column under high flow rate and pressure.         

RIGC using electron beam irradiation provides an effective and convenient 

method to graft monomer onto polymer substrates and subsequent NMDG 

functionalisation to produce fibrous chelating adsorbent.  Therefore the prepared 

adsorbent using RIGC technique and subsequent functionalisation is expected to 

offer better alternative for boron removal from solutions.

Radiation grafting of glycidyl methacrylate (GMA) onto polyethylene coated 

polypropylene (PE-PP) non-woven fabric and grafting of GMA onto nylon fiber 

were reported for preparation of fibrous boron-selective adsorbents. However, the 

obtained adsorbents are fragile and lack of chemical stability especially when the 

degree of grafting is higher than 100%. The former is caused by the highly 

amorphous nature of the incorporated poly(GMA) whereas the latter takes place 

during the adsorbent regeneration process. 

To improve the stability of fibrous adsorbents, grafting of vinylbenzyl 

chloride (VBC), a monomer that has higher chemical stability than aliphatic GMA 

because of its aromatic structure, offers an alternative that can confer fibrous 
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substrates phenyl groups which can be easily activated with the boron selective 

group using a mild reaction.  Moreover, VBC has neither been grafted on nylon-6 

fiber nor used for preparation of fibrous adsorbent for boron removal.  

1.3 The Objectives 

The main objective of this study is to prepare, characterize and test a new 

fibrous boron selective adsorbent for removal of boron from solutions using radiation 

induced grafting and subsequent functionalisation with NMDG. The objective can 

be divided into sub-objectives as follows:

i. To investigate the effects of reaction parameters on the degree of 

VBC grafted onto nylon-6 fibers.

ii. To optimize the reaction parameters with respect to the density of 

NMDG groups incorporated in the poly(VBC) grafted nylon-6 fibers. 

iii. To evaluate the properties of the obtained adsorbent and its 

corresponding precursor using chemical and material research 

techniques. 

iv. To assess the performance of the prepared adsorbent in a batch reactor 

system and establish the relationship between the operating 

parameters and the boron removal capacity.

v. To establish equilibrium isotherms, kinetics and thermodynamic 

behaviors of boron adsorption onto the newly prepared fibrous 

adsorbent in comparison with commercial resin.
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1.4 Scopes of Study

New boron-selective adsorbent is prepared using RIGC technique in 3-stages 

i.e. irradiation, grafting and subsequent treatment with NMDG as depicted in Figure 

1.1. The scope of work can be outlined as follows:

i. Preparation of adsorbent precursor by RIGC of VBC onto nylon-6 

under various grafting parameters including:

 Type of solvents, which included using methanol, ethanol, propanol, 

butanol and pentanol as a diluents.

 Monomer concentration, which was varied in the range of 1–100%.

 Absorbed dose, which was varied in the range of 25–500 kGy.

 Reaction temperature, which was varied in the range of 5–70 oC.

 Reaction time, which was varied from 30 minutes to 48 hours.

ii. The poly(VBC) grafted nylon-6 fibers were chemically modified 

using NMDG solution in 1-4 dioxane to impart the ionic character to 

the grafted fibers under different reaction parameters.

iii. The chemical modification parameters that were investigated 

included:

 Concentration of NMDG, which was varied in the range of 5–15%.

 The DG in the precursor was chosen in the range of 70–130%.

 Reaction time, which was varied in the range of 10–60 minutes.

 Reaction temperature, which was varied in the range of 70–90 oC.

iv. Determination of the physical and chemical properties of the newly 

prepared adsorbent with reference to the original and poly(VBC) 

grafted nylon-6 fibers.  The investigated properties included:

 Morphology, which was observed using scanning electron 

microscopy (SEM).

 Chemical composition, which was investigated using Fourier 

transform infrared spectrometer (FT-IR).
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 Structural properties, which was evaluated using X-ray diffraction 

(XRD).

 Thermal properties, which was measured using differential scanning 

calorimetry (DSC).

 Thermal stability, which was tested using thermogravimetric 

analysis (TGA).

 Mechanical properties, which was measured using a universal 

mechanical tester.

Figure 1.1 The overall flow and scope of the study
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v. The performances of the prepared adsorbent with reference to the 

commercial resin, Diaion CRB 03 were tested under same adsorption 

conditions.  The reaction parameters that were investigated included: 

 Initial boron concentration, which was varied in the range of 20–

500 mg/L.

 Reaction temperature, which was varied from 20–40 oC.

 pH, which was varied in the range of 2–11.

vi. Studying the boron adsorption equilibrium isotherms using Langmuir, 

Freundlich and Redlich-Peterson models.

vii. Investigation of the kinetics of boron adsorption by the newly 

prepared adsorbent using two kinetic models: pseudo first-order and 

pseudo second-order.

viii. Determination of the boron adsorption mechanism on the new 

adsorbent using Weber and Morris intra-particle diffusion model.

  

ix. Studying the boron adsorption thermodynamic and determination of 

its Gibb’s free energy change (ΔGo), enthalpy change (ΔHo) and 

entropy change (ΔSo).     

1.5 Contribution of Present Study

The following contributions are made in the present study:

i. A new fibrous adsorbent containing glucamine capable of overcoming 

the challenges facing the granular resin with respect of adsorption 

capacity and kinetics was developed using a simplified RIGC 

technique based on low cost nylon-6 fibers.

ii. Grafting of VBC onto nylon-6 fiber using RIGC is reported for the 

first time.
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iii. A quadratic statistical model for optimization of the reaction 

parameters and the density of glucamine in the adsorbent is 

developed.

iv. The method developed can be extended to prepare other adsorbents

based on grafting a number of acrylic and vinyl monomers onto 

various synthetic polymeric and natural fibers.

v. The application of the adsorbent can also be extended to remove 

others soluble pollutants.

1.6 Thesis Outline

Chapter 1 contains background of water contamination with boron and 

problem statement to justify the work conducted in this thesis. The objective of the 

thesis, the scope of work and the contribution made are also covered. This was 

followed by the objectives and the scopes of study. A comprehensive literature 

review on commercial boron-selective resins and the use of RIGC techniques for 

preparation of alternative polymeric adsorbents are described in chapter 2. This 

chapter also includes a review of previous studies pertaining boron adsorption 

equilibrium isotherms, kinetics and thermodynamics. Chapter 3 reveals all the 

materials and methods used to prepare and test the new fibrous adsorbent together 

with all equations used for calculations such as degree of grafting, density of 

functionalisation, boron adsorption capacity, boron removal efficiency and others. 

Chapter 4 contains the first part of the results and discussion and describes the 

effects of various grafting parameters on the DG and instrumental characterization of 

the adsorbent precursor with reference to the original nylon-6 fibers. Chapter 5 

contains the second part of results and discussion. Particularly, it discusses the 

results of the effects of various reaction parameters on the density of glucamine 

incorporated in the adsorbent precursors. The results of various properties of the 

obtained fibrous adsorbent are also discussed in comparison with the corresponding 

poly(VBC) grafted precursor. Chapter 6 contains the third part of results and 
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discussion, which represents the performance of the newly prepared radiation grafted 

adsorbent with respect to adsorption capacity, equilibrium isotherms, kinetics and 

thermodynamics. Chapter 7 presents the overall conclusions of this study and the 

recommendations for future work.      
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