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ABSTRACT

Hybrid structure of semiconductor nanostructures on graphene has attracted 
much attention due to their potentials in optoelectronic and electronic. A synthesis of 
zinc oxide (ZnO) nanostructures on graphene/insulator substrates was carried out 
using electrochemical deposition. Several growth parameters such as current density, 
temperature and supporting electrolyte have been investigated. ZnO nanostructures 
were directly grown onto graphene layer whereby zinc nitrate hexahydrate
(Zn(N03)2.6H20 ) solution was used as an electrolyte. The growth temperature was

• • • 2 • varied from 75°C - 90°C at current densities of -0.1 to -3.0 mA/cm for 45 minutes.
Vertically aligned nanorods were obtained at low growth temperatures. The
diameters of grown nanorods were increased with the current densities. Film-like
structure produced by the coalescences between the neighboring nanorods with large
diameters was observed on the samples grown at high current densities and high
temperatures. Low temperature and low current density tended to exhibit the highest
density of nanorod. The grown ZnO structures were highly oriented along the c-axis
and at low current densities seem to show fewer structural defects. The addition of
supporting electrolyte of hexamethylenetetramine (HMTA) shows improvement of
hexagonal shape and smooth surface of ZnO nanorods at equimolar ratio. HMTA
plays its role as mineralizer to supply additional OH' ions in the formation of ZnO
structures. Meanwhile for addition of potassium chloride (KC1) solution, instead of
nanorods, vertically ZnO nanowalls were also formed. It proves that Cl" ions as a
capping agent on (0001) plane and control the formation of two dimensional (2D)
ZnO nanowalls structures and one dimensional (ID) nanostructures with large
diameter. The diffraction peak intensity of HMTA and KC1 solution shows the
crystallinity of the grown structure. This study offers significant benefit for the ZnO
morphology in order to realize high crystalline and uniform ZnO nanostructures.
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ABSTRAK

Struktur hibrid nanostmktur semikonduktor di atas grafen telah menarik 
banyak perhatian kerana berpotensi dalam optoelektronik dan elektronik. Satu 
sintesis nanostruktur zink oksida (ZnO) di atas grafen/penebat dengan menggunakan 
pemendapan elektrokimia telah dilakukan. Beberapa parameter pertumbuhan seperti 
ketumpatan arus, suhu dan elektrolit penyokong telah dikaji. Nanostruktur ZnO 
ditumbuhkan di atas lapisan grafen di mana larutan zink nitrat heksahidrat
(Zn(N03)2.6H20 ) telah digunakan sebagai elektrolit. Suhu pertumbuhan telah diubah

• • 2 • • dari 75°C - 90°C pada ketumpatan arus -0.1 sehingga -3.0 mA/cm selama 45 minit.
Rod nano yang menegak sejajar diperoleh pada suhu pertumbuhan yang rendah.
Diameter rod nano yang tumbuh meningkat dengan peningkatan ketumpatan arus.
Struktur seperti filem telah dihasilkan oleh percantuman di antara rod-rod nano
berdekatan dengan diameter yang besar telah diperhatikan pada sampel yang tumbuh
pada ketumpatan arus tinggi dan suhu tinggi. Suhu rendah dan ketumpatan arus
rendah lebih cenderung menunjukkan kepadatan rod nano paling tinggi. Struktur
ZnO yang tumbuh berorientasi di sepanjang paksi-c dan pada ketumpatan arus
rendah seolah-olah menunjukkan sedikit kecacatan struktur. Penambahan larutan
elektrolit penyokong heksametilenatetramina (HMTA) menunjukkan pembaikan
bentuk heksagon dan permukaan licin rod nano ZnO pada nisbah sama molar.
HMTA memainkan peranannya sebagai pemineral untuk membekalkan ion OH"
tambahan dalam pembentukan struktur ZnO. Sementara itu, bagi penambahan larutan
kalium klorida (KC1), bukan sahaja rod nano, dinding nano ZnO yang menegak juga
terbentuk. Ini membuktikan bahawa ion Cl" bertindak sebagai ejen penutup pada
satah (0001) dan mengawal pembentukan struktur dua dimensi (2D) dinding nano
ZnO dan satu dimensi (ID) nanostruktur berdiameter besar. Keamatan puncak
pembelauan larutan HMTA dan KC1 menunjukkan kehabluran struktur yang tumbuh.
Kajian ini menawarkan manfaat yang besar untuk morfologi ZnO bagi mewujudkan
habluran yang tinggi dan nanostruktur-nanostruktur ZnO yang seragam.
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CHAPTER 1

INTRODUCTION

1.1 Research background

Nowadays, great attention has been attracted to the synthesis of 
semiconductor nanostructures materials due to their enhanced optical, 
electrochemical and electrical properties intrinsically associated with their low 
dimensionality. Among the various semiconductors materials, zinc oxide (ZnO) has 
become a technologically important material that has been most extensively studied 
among the researchers due to its versatile properties such as wide direct bandgap 
(3.37 eV) and large exciton binding energy of 60 meV which is much larger than that 
of GaN (21meV) [1], ZnO has been commonly used for many applications in 
electronic and optoelectronic devices such as light-emitting diodes (LED) [2,3], 
photodetectors [4,5], gas sensor [6], solar cells [7,8] and UV lasers [9], Furthermore, 
from various oxide materials, ZnO have the richest family of nanostructures such as 
nanorods, nanowires, nanoflowers, nanosheets, nanobelts, nanowalls and nanorings. 
ZnO nanowires has been explored for gas sensors due to large surface area versus 
nanowires volume whose widths are much narrower than that of lithography-based 
thin film technology which can increase the sensitivity of sensors beyond the 
limitations of planar thin film device. These diverse groups of ZnO nanostructures 
have been synthesized using various growth methods [10,11],

The methods employed for the growth of ZnO nanostructures can be 
performed either by vapor-phase method or by liquid-phase method. For the 
vapor-phase method such as chemical vapor deposition [12,13], thermal
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Finally, chapter 7 concludes the results obtained and discusses the future 
research directions.
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1.6 Thesis Overview

This thesis is organized into 7 chapters. Chapter 1 gives a brief introduction 
of the research background on the growth of ZnO nanostructures. The objectives, 
research scopes and research activities are also presented.

Chapter 2 presents a comprehensive review of literature on the ZnO and 
graphene properties together with their application. The first part of this chapter 
explains the structural, optical and electronic properties of ZnO in order to provide 
in-depth knowledge of ZnO materials. Growth method and application of ZnO 
nanostructures are also been described. The next part focused on the graphene 
structure together with its properties and their application.

In chapter 3, the details of experimental procedures in this research are 
described. The substrate preparation and the experimental setup are explained in the 
first part. Second parts describe the growth procedure and condition of the grown 
ZnO structures. The characterization techniques and equipment used are mentioned 
in the last part.

In chapter 4, the effects of current density and temperature on the structure of 
the grown ZnO on graphene/glass substrate in purely zinc nitrate solution are 
discussed. The morphology, compositional, structural and optical properties of ZnO 
nanorods is systematically characterized and described.

In chapter 5, the effects of supporting electrolyte of HMTA and KC1 solution 
on the grown ZnO structures on graphene/glass substrate are discussed. The 
morphology, compositional, structural and optical properties of ZnO structures is 
systematically characterized and described.

In chapter 6, the effects of supporting electrolyte of HMTA and KC1 on the 
grown ZnO structures on graphene/Si02/Si substrate are discussed. The morphology, 
compositional, structural and optical properties of ZnO structures is systematically 
characterized and described.



6

The optical properties are characterized using PL measurement and UV-Vis 
spectrometer. All the data collected is analyzed.

Figure 1.1 Research activities
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1.4 Research Scope

This study is focused on the growth of ZnO nanostructures on monolayer 
graphene/glass by electrochemical deposition method. ZnO nanostructures are 
synthesized using purely zinc nitrate (Zn(N03)2) solution at different current

• • 9 •densities of -0.1, -0.5, -1.0, -2.0 and -3.0 mA/cm with the growth temperatures of
75, 80 and 90°C. However, the effects of adding supporting electrolyte from 
hexamethylenetetramine (HMTA) and potassium chloride (KC1) solution on the ZnO 
structures grown on monolayer graphene/glass and monolayer graphene/Si02/Si are 
also been studied. The molar ratio of Zn(N03)2:HMTA and Zn(N03)2:KCl was set to 
9:1, 7:3, 1:1 and 1:9.

The morphological and compositional characterization is carried out using 
field-emission scanning electron microscopy (FESEM) equipped with energy 
dispersive X-ray spectroscopy (EDS). The structural and optical properties are 
performed using X-ray diffraction (XRD), photoluminescence (PL) measurement and 
UV-Vis spectrometer, respectively.

1.5 Research activities

The implementation of this study has been summarized into a flowchart as 
shown in Figure 1.1. This study is focused on the growth of ZnO nanostructures on 
graphene substrate by electrochemical deposition method. Firstly, the preparation of 
the experimental setup is performed. The formation of ZnO structures on graphene 
substrate is carried out in a simple electrochemical deposition cell. There are two 
types of graphene substrates are used in this work which is graphene/glass and 
graphene/silicon dioxide substrate. The growth of ZnO nanostructures on graphene 
substrates are investigated by varying a few parameters such as current density, 
temperature and molar ratio concentration of supporting electrolyte. Next, the 
morphological and elemental study on the grown ZnO structures are performed using 
FESEM equipped with EDS. The structural properties are investigated using XRD.
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Nowadays, the hybrid structures of ZnO nanostructures on graphene have 
attracted much attention because the nanostructures can offer additional 
functionalities to graphene for realizing advanced nanoscale applications due to the 
superior properties of nanostructures such as quantum confinement effects and high 
surface-to-volume ratio [53,54,60], Based on the previous studies, they manage to 
grow the ZnO on graphene with high crystallinity and uniformity [29,53-55], 
Xu et al. reported the seedless growth of ZnO nanotubes and nanorods on graphene 
by electrochemical deposition [29,55], They reported the growth of highly dense 
vertically aligned ZnO nanostructures by using solely zinc nitrate as the electrolyte 
with the introduction of oxidation process of graphene prior to the actual growth. In 
this study, we directly grow the ZnO nanostructures on graphene by a single-step 
cathodic electrochemical deposition method by studying in details about the current 
density, temperature and supporting electrolyte because the deposition techniques 
and deposition parameters play an important role in controlling the morphology and 
physical properties of the nanostructures.

1.3 Research Objectives

The objective is to grow high dense ZnO nanostructures on graphene 
substrates by electrochemical deposition method.

1. To investigate the effects of current density and temperature on the vertically 
aligned ZnO nanostructures grown on monolayer graphene/glass.

2. To study the influences of supporting electrolyte effect on the structure of 
ZnO deposited on monolayer graphene/insulator.

3. To characterize the morphological, compositional, structural and optical 
properties of the structure.
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compositional, structural and optical properties of the grown ZnO nanostructures 
were characterized.

1.2 Research motivation

Nowadays, rapidly increasing demand for energy together with more 
concerns about the environment force us to seek sustainable energy resources and 
clean energy technologies. As a result, solar cells have received increased interest in 
recent years. Solar cells based on titanium dioxide (Ti02) nanoparticles with a size of 
10 to 30 nm have been used as photoanodes with demonstrated 11% photovoltaic 
conversion efficiency [56], Recently, ZnO has emerged as a promising candidate due 
to its semiconducting properties which are very similar to the most used 
semiconductor oxide, Ti02, but are especially due to the possibility of obtaining ZnO 
nanostructures by easy and low-cost techniques. It has similar energy levels to Ti02. 
More importantly, it is much higher carrier mobility which is more favorable for the 
collection of photo-induced electrons [57,58], Besides that, another advantage of 
ZnO over Ti02 is that it can be synthesized applying a wide range of synthesis 
techniques in order to obtain a great variety of different morphologies and 
nanostructured electrodes, especially vertically-aligned nanostructures.

It was reported that nanostructured thin film made of vertical-aligned 
nanowires provides a higher interfacial area between the donor and the acceptor 
material (polymer/oxide, respectively) with highly-efficient electron transport 
pathways. In the case of dye-sensitized solar cells (DSSCs), the replacement of the 
nanoparticle electrode by vertically-aligned nanostructures has also emerged as a 
possible way to obtain faster electron transport thus improving solar cell efficiency 
[59], In recent years, graphene has to be found as replacement to transparent 
conductive oxides such as FTO and ITO as solar cell electrode. Graphene is expected 
to act as an excellent conducting transparent electrode material [47,48] because of its 
extraordinary electrical, thermal, and mechanical properties including a carrier

• •  * 4 2  •  •  3mobility exceeding 10 cm /Vs and a thermal conductivity of 10 W/mK [49-52],
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evaporation [14-20] and pulsed laser deposition [21], it requires high temperature 
and is also considered as a high-cost method. Thus, considerable attention has been 
focused on liquid-phase method such as chemical bath deposition [22], hydrothermal 
[23,24], sol-gel [25-28] and electrochemical deposition [29-35], Among these 
methods, the electrochemical deposition has advantages over other methods because 
of its simplicity, low cost and low process temperature [36], In addition, this method 
gives good controllability of both growth rate and structure dimension. Furthermore, 
the performance and efficiency of electrical and optical nanodevices are directly 
determined by the underlying nanostructures properties which are greatly dependent 
on the size, shape, crystallographies orientation and morphology. Besides deposition 
technique, corresponding parameters such as temperature [37], substrate [38], 
precursor [39,40] and electrolyte [41] play an important role in controlling the 
morphology and physical properties of the nanostructures[42],

Recently, ZnO has been shown to be able to enhance the power conversion 
efficiency of conjugated polymer-based solar cells [43,44], Typically, the electrode 
of solar cell is formed by the transparent conductive oxides such as fluorine-doped 
tin oxide (FTO) or indium tin oxide (ITO) deposited on glass [45,46], However, FTO 
and ITO are expensive and non-flexible in contrast to graphene which is cheap and 
flexible. Graphene which has two dimensional honeycomb-like carbon structures is 
expected to act as an excellent conducting transparent electrode material [47,48] 
because of its extraordinary electrical, thermal, and mechanical properties including

. . .  * 4 2  • •  3carrier mobility exceeding 10 cm /Vs and a thermal conductivity of 10 W/mK 
[49-52], Interestingly, the direct growth of ZnO nanorods on graphene with high 
crystallinity and uniformity has also been reported in several literatures so far 
[29,53-55],

In this study, the formation of ZnO nanostructures on graphene/insulator by 
electrochemical deposition process is carried out. Firstly, the effects of current 
density and growth temperature of ZnO structures grown on monolayer 
graphene/glass in purely zinc nitrate solution were studied. Next, the effects of 
supporting electrolyte on the growth of ZnO nanostructures on graphene/glass 
substrate and graphene/Si02/Si substrate were performed. The morphological,
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