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ABSTRACT

System frequency is a vital indicator for many applications in electrical

power system dynamics. Therefore, an accurate and fast estimation of system

frequency is important task since it is prerequisite for rapid-response applications

such as in load shedding design, generator protection and renewable energy control.

This thesis proposes an Artificial Neural Network (ANN) as a new estimator for

frequency estimation in power system dynamics. In order to perform the ANN,

power flow solution is obtained first for the system to be studied. The purpose of

load flow simulation is to get some operating parameters which have the most

influences on the system frequency behaviour. Then, a dynamic simulation is done

by using a DigSILENT Power Factory Simulator to analyse frequency behaviours of

the system by considering different operation conditions and types of disturbances

that occur in the system (i.e. load injection, load rejection and generation outage).

Simulations were carried out on the IEEE 9-Bus Test System and IEEE 39-Bus Test

System (New England). The most relevant variables were selected as inputs to the

ANN that were taken from data generated by dynamic simulator. Meanwhile, the

ANN output is the undershoot frequency or overshoot frequency. Besides, the

Lavernberg–Marquardt optimization with very fast propagation algorithm has been

adopted for training feed–forward Neural–Network. The performances of the ANN

were evaluated by using Mean Square Error and Regression analysis. To verify the

effectiveness of the proposed approach, the results were compared with conventional

methods in terms of estimation error and computation time. Therefore, the ANN has

a great potential in real-time application since it provides a good accuracy (small

error), fast and easy implementation.
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ABSTRAK

Frekuensi sistem merupakan penunjuk yang penting untuk kebanyakan

aplikasi di dalam sistem elektrik kuasa dinamik. Oleh itu, ketepatan dan kepantasan

menganggar frekuensi merupakan tugas yang penting memandangkan ia adalah

prasyarat kepada aplikasi tindak balas yang pantas seperti merancang beban,

perlindungan penjana dan mengawal tenaga yang boleh diperbaharui. Tesis ini

mencadangkan Rangkaian Neural Buatan (ANN) sebagai penganggar baru untuk

menganggar frekuensi di dalam sistem kuasa dinamik. Dalam usaha untuk

membangunkan ANN, penyelesaian aliran kuasa diperolehi terlebih dahulu untuk

sistem yang akan dikaji. Tujuannya ialah untuk mendapatkan beberapa parameter

operasi yang paling mempengaruhi kelakuan frekuensi sistem. Kemudian, penyelaku

dinamik sistem kuasa dilaksanakan oleh ‘DigSILENT Power Factory Simulator’

untuk menganalisa tingkah laku frekuensi sistem dengan mengambil kira keadaan

operasi yang berbeza dan jenis-jenis gangguan (misalnya pertambahan beban,

pengurangan beban dan penjanaan lumpuh). Kajian simulasi telah dijalankan ke atas

Sistem Ujian IEEE 9-Bas dan Sistem Ujian IEEE 39-Bas (New England).

Pembolehubah-pembolehubah yang paling berkaitan yang diambil daripada

penghasilan data oleh penyelaku dinamik telah dipilih sebagai input kepada ANN.

Sementara itu, output ANN ialah frekuensi terendah dan frekuensi tertinggi. Di

samping itu, Pengoptimuman ’Lavernberg-Marquardt’ menggunakan algoritma

rambatan sangat pantas telah diterima pakai untuk latihan galakan hadapan

Rangkaian Neural. Pelaksanaan ANN dinilai dengan menggunakan Min Ralat Kuasa

Dua dan analisis Regresi. Untuk mengesahkan keberkesanan kaedah yang

dicadangkan, hasil keputusan telah dibandingkan dengan kaedah-kaedah

konvensional dari segi ralat penganggaran dan masa pengiraan. Oleh itu, ANN

mempunyai potensi yang cerah bagi aplikasi masa sebenar memandangkan ia

memberikan ketepatan baik (ralat yang kecil), pantas dan pelaksanaan yang mudah.
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CHAPTER 1

INTRODUCTION

1.1 Frequency in Power System

A power system is predominantly in steady state operation or in a state that

could with sufficient accuracy be regarded as steady state [1]. Under steady state

conditions the total power generated by power stations is equal to the system load

and losses, while frequency normally operated at a nominal value. Typically, the

nominal frequency is assumed to be 50 Hz as in the ENTSO-E Continental Europe

system (formerly UCTE) [2] and Malaysia standard (MS IEC 60038). Frequency is

regarded as a paramount index of the operation of power systems because it can

reflect the dynamic energy balance situation between generating power and load

[3,4]. Therefore, the frequency is the basis indicator for monitoring of other electrical

variables [5].

System frequency is normally maintained at nominal value when the same

amount of electrical power produced is consumed by the loads and including system

losses [1]. It can also be noted that the frequency is the same in the whole system at

steady state condition, provided that the balance between real power generator and
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demand is met. Thus, the frequency of power system is dependent on real power

balance.

During normal operating conditions, the system frequency does not deviate

much from its nominal value. Normal operational practice in Malaysia is to keep

frequency deviations in range of ± 1% of the nominal value. Practically, the

permitted stationary frequency deviation for the system operation is established as 50

± 0.5 Hz [6] including Malaysia, i.e. 49.5 – 50.5 Hz range. Beyond these limits may

result abnormal conditions of electrical power system.

However, a change in real power demand at one point of a network is

reflected throughout the system by a change in frequency. Besides, the frequency

may deviate from the set point value either due to a generation surplus or a

generation deficit within the whole system which has an accelerating or decelerating

effect on the synchronous machines [1]. In short, the frequency varies from its

nominal value due to the transient events occurred in the power system dynamics. A

dynamic phenomenon in a power system is initiated by a disturbance. Therefore, the

response of the system after disturbance occurred depend on a how large the

disturbance is [3].

The frequency of the system is reduced when a load increase is not

compensated for by a corresponding increase of the turbine power of the connected

generators. The power deficit decelerates the generator rotors and consequently the

frequency is reduced. Frequency reductions also arise when production is lost, e.g. as

a consequence of failures in the system which lead to that protections disconnect the

failed equipment [1]. A load reduction in the system which is not compensated for by

a reduction of turbine power leads to a frequency increase. These behaviors of a

power system dynamics is summarized as shown in Table 1.1
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Table 1.1: Behavior of power system frequency

System Condition System Frequency

PG > PL + PLOSS Increase

PG = PL + PLOSS No change

PG < PL + PLOSS Decrease

A non-nominal frequency causes a lower quality of the delivered electrical

energy. A large frequency deviation would degrade load performance, cause the

transmission lines to be overloaded, also could interfere with system protection

schemes and control [7]. Further, too large frequency deviation would damage

equipment, since a lot of equipment in the power stations, e.g. power supply systems,

cannot tolerate very low frequencies.

Furthermore, the worst case when there are very low frequencies (lower than

48Hz) [2,3] can lead to damaging vibrations in steam turbines which has to be

disconnected. This constitutes an even worse stress on the system ultimately leading

to a complete power system collapse [2,3]. In comparison with the thermal units,

hydro power plants are more robust and can normally cope with frequency down to

45 Hz [1]. In short, off-nominal frequency can directly impact on power system

operation and system reliability [3]. An example a normal and abnormal frequency

range of power system (i.e. 60 Hz) for United States of America (USA) and

Canadian system are illustrated in Figure 1.1[7].
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Figure 1.1 Normal and abnormal frequency range

1.2 Problem Statement

The major problem of an electric power system dynamics is due to

disproportion between generated powers and loads. This might leads to instability in

the power system, and hence resulting to a black out. Imbalance between generated

powers and loads will be affected on frequency variation.

The estimating frequency is an important task in the power system operation,

monitoring, control and protection. Frequency estimation is one of the requirements

for under frequency protection system design such as Under Frequency Load

Shedding (UFLS). Based on this fact the most important automatic control schemes

use the system frequency as a main input variable. The estimated frequency is used
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to design load shedding accurately to correct frequency back to an acceptable

threshold.

A conventional simulator would require unrealistic hours of computational time

for all possible dynamic system scenarios. A simulation for a large case data will

degrade the performance in terms of slow computational. Many evaluation of the

dynamic behavior of a system need a rapid response, like the case of planning a load

shedding scheme [9]. Therefore, a new frequency estimator using ANN is proposed

in this research to deal with this problem due to the ability to provide fast response

with sufficient accuracy.

1.3 Objectives of Research

The objectives of this research study are to:

i) Develop dynamic simulator for frequency response of the system.ii) Develop an ANN for frequency estimation in power system dynamics.

iii) Compare results between ANN and dynamic simulator (conventional

method) in terms of error accuracy (MSE) and computational time.
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1.4 Scope of Research

The scopes of this research are:

i) IEEE 9-Bus Test System for a small case study and IEEE 39-Bus Test

System (New England) for a large scale system.

ii) Developing dynamic simulations using DIgSILENT Power Factory

Simulator of the test system.

iii) Estimate undershoot and overshoot frequency, i.e. minimum

frequency (fmin) and maximum frequency (fmax)

iv) Types of disturbance considered are load injection, load rejection and

generator outage.

v) Using Matlab’s software (ANN toolbox) for frequency estimation.

1.5 Contributions of Research

The main contributions of this research are:

i) Developing an ANN based dynamic simulator for electrical power

systems.

ii) Application of new approach to estimate the frequency dynamics of

the power system within different operation scenarios.

iii) Simulation studies (case studies) have been performed for different

scale of test systems.
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1.6 Thesis outline

This thesis consists of 5 chapters. Chapter I discusses about the introduction

with regards to frequency in power systems, problem statement, objectives of

research, scope of research and contributions of research.

Chapter 2 discusses a literature review of previous work that has been done.

It discusses about frequency estimation methods in power system such as

Probabilistic Technique, Signal Processing Techniques and Artificial Intelligence

Techniques. The limitations of previous method and a proposed new technique are

also discussed.

In Chapter 3, the discussion will be on the methodology of this project. It

contains the procedure of research such as power flow calculation in steady state

condition, procedure of dynamic simulation (time-domain simulation) when a

disturbance is considered to be occurred into the system studied. Both simulations for

load flow and dynamic are done by using a conventional simulator, DIgSILENT

Power Factory Simulator. Then, MATLAB is used for ANN implementation based

on similar cases of dynamic simulations to estimate frequency in power system

dynamics. The approached method is applied on the IEEE 9-Bus Test System. The

similar procedure therefore is applied on the IEEE 39-Bus Test System for a larger

scale system.

The result, analysis and discussion will be presented in Chapter 4. It is based

on load flow result, time-domain simulation and application of ANN for frequency

response in power system dynamics. The comparisons between conventional

simulator and ANN have been made. The ANN shows some advantages in term of

error estimation, computation time and easy implementation as compared to

conventional method. The last chapter, Chapter 5 concludes this research and

recommendation for future research.
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