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ABSTRACT

Metal-oxide, namely zinc oxide (ZnO) nanostructures and thin films on
graphene is interesting because these structures can offer additional functionality to
graphene for realizing advanced electronic and optoelectronic applications. Graphene
has a great potential for novel electronic devices because of its extraordinary
electrical mobility exceeding 10* cm?/Vs and a thermal conductivity of 10° W/mK.
Therefore, with the excellent electrical and thermal characteristics of graphene
layers, the hybrid ZnO/graphene structure is expected to offer many sophisticated
device applications such as sensing devices. In this study, the seed/catalyst-free
growth of ZnO on single layer (SL) and multilayer (ML) graphene by thermal
evaporation of Zn in the presence of oxygen (O,) gas was performed. The effects of
substrate temperatures, substrate positions and graphene thicknesses on the
morphological, structural, and optical properties were found to be very pronounced.
The grown ZnO structures exhibit three different structures, i.e., nanoclusters,
nanorods, and thin films at 600°C, 800°C, and 1,000°C, respectively. By setting the
substrate to be inclined at 90°, the growth of ZnO nanostructures, namely
nanoclusters and nanorods, on SL graphene was successfully realized at temperatures
of 600°C and 800°C, respectively. However, no growth was achieved at 1,000°C
due to the possible severe oxidation of graphene. For the growth on ML graphene at
600°C with an inclination angle of 90°, the grown structures show extremely thick
and continuous cluster structures as compared to the growth with substrate’s
inclination angle of 45°. Moreover, the base of nanorod structures grown at 800°C
with an inclination angle of 90° also become thicker as compared to 45°, even
though their densities and aspect ratios were almost unchanged. The morphologies of
grown structures at 1,000°C with an inclination angle of 90° do not show significant
difference with 45°. The intensity ratio of UV emission (lyy) and visible emission
(lvis) was changed, depending on the temperature. The structures grown at a low
temperature of 600°C show the highest value of Iyy/lvs of 16.2, which is almost two
times higher than the structures grown on SL graphene, indicating fewer structural
defects. From the results obtained, the temperature below 800°C, substrate position
inclined at 90° towards the gas flow, and ML graphene seems to be preferable
parameters for the growth of ZnO structures by thermal evaporation because these
factors can overcome the problem of graphene’s oxidation that takes place during the
growth.
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ABSTRAK

Logam-oksida, iaitu zink oksida (ZnO) berstruktur nano dan filem nipis di
atas grafin amat menarik kerana ia boleh menawarkan fungsi tambahan kepada grafin
untuk merealisasikan aplikasi elektronik dan optoelektronik maju. Grafin mempunyai
potensi besar untuk peranti elektronik novel kerana mobiliti elektrik yang luar biasa
melebihi 10* cm?/Vs dan kekonduksian terma 10° W/mK. Oleh itu, dengan ciri-ciri
elektrik dan haba yang sangat baik dari lapisan grafin, struktur hibrid ZnO/grafin
dijangka menawarkan banyak aplikasi peranti canggih. Dalam kajian ini,
pertumbuhan ZnO bebas pemangkin/benih di atas grafin berlapisan tunggal (SL) dan
lapisan berganda (ML) menggunakan penyejatan haba Zn dalam kehadiran oksigen
(O,) gas telah dilakukan. Kesan suhu substrat, kedudukan dan ketebalan substrat
grafin pada sifat-sifat morfologi, struktur, dan optik didapati sangat ketara. Pada
dasarnya, struktur ZnO yang tumbuh menunjukkan tiga struktur berbeza, iaitu
nanokluster, nanorod, dan filem nipis masing-masing pada 600°C, 800°C, dan
1,000°C. Dengan menetapkan substrat condong pada 90°, pertumbuhan struktur-
struktur nano ZnO iaitu nanokluster dan nanorod pada SL grafin telah berjaya
direalisasikan pada suhu 600°C dan 800°C. Walau bagaimanapun, tiada pertumbuhan
dicapai pada 1,000°C berkemungkinan akibat daripada pengoksidaan grafin yang
teruk. Untuk pertumbuhan di atas ML grafin pada 600°C dengan sudut kecondongan
90°, pertumbuhan menunjukkan struktur kelompok yang sangat tebal dan berterusan
berbanding dengan pertumbuhan pada sudut kecondongan substrat 45°. Selain itu,
tapak struktur nanorod yang tumbuh pada 800°C dengan sudut kecondongan 90°
juga menjadi lebih tebal berbanding 45°, walaupun kepadatan dan nisbah aspek
hampir tidak berubah. Struktur morfologi pada 1,000°C dengan sudut kecondongan
90° tidak menunjukkan perbezaan yang signifikan berbanding 45°. Nisbah keamatan
UV (lyy) dan sinar nampak (lys) berubah bergantung kepada suhu. Struktur yang
tumbuh pada suhu rendah daripada 600°C menunjukkan nilai tertinggi lyy / lvis iaitu
16.2, yang hampir dua kali lebih tinggi daripada struktur yang tumbuh di atas SL
grafin, menunjukkan sedikit kecacatan struktur. Daripada keputusan yang diperolehi,
dapat disimpulkan bahawa suhu di bawah 800°C, kedudukan substrat condong pada
90 ° arah aliran gas, dan ML grafin seolah-olah menjadi parameter terbaik untuk
pertumbuhan struktur ZnO oleh penyejatan haba kerana faktor-faktor ini boleh
digunakan untuk mengatasi masalah pengoksidaan grafin yang berlaku semasa
pertumbuhan.
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CHAPTER 1

INTRODUCTION

1.1  Research background

We are currently living in the age of silicon nanotechnology. Silicon (Si)
based transistor drives a modern computing revolution year by year. The size of a
transistor has been reduced consistently which allows more transistors to be packed
onto a single chip, thereby increasing a computer power. This follows the Moore's
Law, according to which the number of transistors on a chip is doubling
approximately once every 2 years. Principally, the miniaturization of a transistor is
known to be very helpful in increasing an overall efficiency of the silicon ultra-large-
scale integrated circuits (Si-ULSIs). However, this unceasing miniaturization of
transistors is becoming increasingly difficult owing to the several limitations such as
short channel effect and gate leakage current etc.

In recent years, a concept of the advanced heterogeneous integration of the Si
platform has attracted much attention towards the recognition of a ‘More than
Moore’ technology [1]. To realize such technology, a growth of the high-quality
elements (i.e., germanium (Ge) [2]) compound semiconductors (i.e., gallium arsenide
(GaAs) [3], gallium nitride (GaN) [4], silicon carbide (SiC) [5]), metal oxides (i.e.,
zinc oxide (ZnO) [6]), and carbon-based materials (i.e., graphene [7], carbon
nanotube (CNT) [8]) on the Si platform is highly required. The co-integration of
these materials enables the present ultra-large-scale integrated circuits (ULSIs) to be

facilitated not only with ultra-high speed complementary metal-oxide semiconductor



(CMOS) transistors and novel transistors, [9] but also with the various kinds of
functional devices, such as optical devices [10], photodetectors [11], solar batteries
[12], and sensors [13,14]. An Intelligent system-on-chip (i-SoC) on the Si is
considered as a practical and promising direction. However, for the fabrication of
electronic devices, an electronic insulation of these materials and the Si substrate by
insulator such as silicon dioxide (SiO;) is necessary. It is worth noting that, the
growth of highly crystalline and highly oriented material on insulator is a challenging
task towards the realization of such advanced hybrid integration on the Si platform.
There is a need of some great development in the field of growth technologies.
Hence, this study is going to initiate an innovative technique to grow ZnO on an
insulator by utilizing graphene as a template layer. Figure 1.1 illustrates an evolution

of the Si based nano-electronics devices.

HP CMOS

_ Sensors, @ Optical interconect
Optical

MEMs, SiC, GaN etc.
Devices | giere (@SIC:

Enabled
More Functionality

Than
Moore

Insulator

Enabled Tunnel FET

performance
Boosting
More Moore I High Drive Current
Hybrid CMOS
Ge CMOS -v CMOS pMOS

Figure 1.1  Evolution of Si-based nano electronics [15]

1.2 Research motivation

Since a decade ago, intensive researches have been focused on fabricating
one-dimensional (1D) zinc oxide (ZnO) semiconducting nanostructures because it

can provide a variety of important applications due to their unique morphologies,



compositions, and chemical/physical properties [6,16]. Besides that, ZnO possesses
wide band gap and large exciton energy and it is considered to be a promising

candidate for the fabrication of several kinds of devices.

Meanwhile, at a room temperature (RT), the graphene retains a high carrier
mobility of up to 200,000 cm?/Vs [17], which can provide a long mean free path of
1.2 um at a carrier concentration of 2 x 1011 cm? At RT also, the quantum Hall
effect exist in graphene, owing to ballistic transport of electrons and holes [18]. This
ability makes graphene suitable for use in various ballistic device applications. It has
also been observed that the graphene possesses a very high thermal conductivity
(~5000 W/mK) [19-23]. Since graphene is an excellent conductor and transparent
material, the hybrid structure of ZnO/graphene shall lead to several device
applications not only on Si substrate but also on other insulating substrates such as

transparent glass and transparent flexible plastic

As mention previously, the growth of semiconductor materials on an insulator
such as SiO, is challenging due to its amorphous structure. Therefore, an
introduction of graphene as a template layer is a promising candidate to overcome
this issue. The feasibility of growing, highly oriented single crystalline ZnO is one of
the main reasons of utilizing graphene as a buffer layer. The graphene consists of a
two-dimensional hexagonal network of carbon atoms which is formed by making
strong triangular o-bonds of the sp2 hybridized orbitals. It is worth noting that the
atomic arrangement of graphene is similar to the (111) plane of zinc blence structure
and c-plane of a hexagonal crystalline structure which makes the growth of

semiconductor nanostructures and thin film on graphene feasible.

In this study, the formation of ZnO nanostructures on the graphene/SiO,/Si
substrates by the thermal evaporation process without any assist form catalyst is
carried out. The growth of ZnO nanostructures on the graphene is carried out by
using a simple thermal evaporation of Zn powder and oxygen (O;) gas under the
atmospheric pressure. The optimization of growth parameter such as substrate
temperature, oxygen flow rate, substrate inclination angles and graphene thickness

were investigated. Finally, the morphological, compositional, crystallographic and



optical properties of the as-grown ZnO nanostructures are systematically
characterised. The possible growth mechanism for the different geometrical

morphologies of the nanostructure is also proposed.

1.3 Objectives

To synthesize high density ZnO nanostructures on the graphene/SiO,/Si

substrate by thermal evaporation technique

i) To investigate the effect of oxygen flow rates, substrate temperatures
substrate inclination angles and graphene thicknesses on the surface
morphology, compositional crystallographic and optical properties of

ZnO nanostructures.

i) To propose the reasonable growth mechanism based on the obtained

results.

1.4 Research activities

The implementation of this study has been summarized into a flowchart as
shown in Figure 1.2. This study is focused on the growth of one dimensional (1D)
Zn0O nanostructures on the graphene by the thermal evaporation process without any
assistance of a catalyst. The growth was carried out by the thermal evaporation
technique in a dual zone furnace. Firstly, the growth of ZnO nanostructures was
investigated by varying the growth parameters (i.e. substrate temperatures, oxygen
flow rates, and substrate inclination angles and graphene thickness). The
morphological and elemental analysis of the grown ZnO nanostructures were
performed by using the field emission scanning electron microscopy (FESEM)
equipped with the electron dispersive spectrometer EDS. The crystallographic
properties were investigated using x-ray diffractometer (XRD) and the optical
properties are characterized using photoluminescence (PL) spectrometer. The

possible growth mechanism was proposed based on the obtained morphology.



Growth of Zinc Oxide nanostructures on
Graphene/insulator/silicon substrate by thermal
evaporation

Preparation of experimental setup
for ZnO growth

Growth of ZnO nanorods by Thermal
Evaporation technique

Morphological, compositional,
crystallographic and optical
characterization of ZnO using
FESEM, EDS, XRD and PL
measurements

Figure 1.2 Research activities

1.5  Thesis organization

This thesis has been organized into 5 chapters. Chapter 1 gives an overview
of the research background and motivation of the study. The objectives and research

activities of the present work are also presented in this chapter.

In chapter 2, an overview of the basic material properties of ZnO is presented.
The structural, electronic and optical properties of ZnO are described in order to
provide an in-depth knowledge of the ZnO materials. This chapter also explains the
material properties of graphene and its structural properties. The hybrid integration
of the ZnO and graphene and its possible applications are also presented. Besides
that, a brief description of the methods that is widely used to grow the ZnO
nanostructures, as well as its potential applications in the optoelectronic devices were
described.



In chapter 3, the properties of graphene substrate that have been used in this
work are described. The growth of ZnO nanostructures on the substrates by a simple
thermal evaporation process without any catalyst and the characterization techniques

employed are also described in detail.

In chapter 4, the growth of ZnO nanostructure on the graphene by a thermally
evaporated Zn powder in the presence of O, gas is presented. The optimization of the
growth parameter such as substrate temperature, oxygen flow rate, substrate
inclination angles and graphene thickness were investigated. A basic study of the
morphological, compositional, and crystallographic and photoluminescence
properties of the grown ZnO are performed and the possible growth mechanism is

also proposed in this chapter.

Finally, chapter 5 concludes the contributions of the present work and

discusses the future research directions.
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