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ABSTRACT 

 Metal-oxide, namely zinc oxide (ZnO) nanostructures and thin films on 

graphene is interesting because these structures can offer additional functionality to 

graphene for realizing advanced electronic and optoelectronic applications. Graphene 

has a great potential for novel electronic devices because of its extraordinary 

electrical mobility exceeding 10
4
 cm

2
/Vs and a thermal conductivity of 10

3
 W/mK. 

Therefore, with the excellent electrical and thermal characteristics of graphene 

layers, the hybrid ZnO/graphene structure is expected to offer many sophisticated 

device applications such as sensing devices. In this study, the seed/catalyst-free 

growth of ZnO on single layer (SL) and multilayer (ML) graphene by thermal 

evaporation of Zn in the presence of oxygen (O2) gas was performed. The effects of 

substrate temperatures, substrate positions and graphene thicknesses on the 

morphological, structural, and optical properties were found to be very pronounced. 

The grown ZnO structures exhibit three different structures, i.e., nanoclusters, 

nanorods, and thin films at 600°C, 800°C, and 1,000°C, respectively. By setting the 

substrate to be inclined at 90°, the growth of ZnO nanostructures, namely 

nanoclusters and nanorods, on SL graphene was successfully realized at temperatures 

of 600°C and 800°C, respectively. However, no growth was  achieved at 1,000°C 

due to the possible severe oxidation of graphene. For the growth on ML graphene at 

600°C with an inclination angle of 90°, the grown structures show extremely thick 

and continuous cluster structures as compared to the growth with substrate’s 

inclination angle of 45°. Moreover, the base of nanorod structures grown at 800°C 

with an inclination angle of 90° also become thicker as compared to 45°, even 

though their densities and aspect ratios were almost unchanged. The morphologies of 

grown structures at 1,000°C with an inclination angle of 90° do not show significant 

difference with 45°. The intensity ratio of UV emission (IUV) and visible emission 

(IVIS) was changed, depending on the temperature. The structures grown at a low 

temperature of 600°C show the highest value of IUV/IVIS of 16.2, which is almost two 

times higher than the structures grown on SL graphene, indicating fewer structural 

defects. From the results obtained, the temperature below 800°C, substrate position 

inclined at 90° towards the gas flow, and ML graphene seems to be preferable 

parameters for the growth of ZnO structures by thermal evaporation because these 

factors can overcome the problem of graphene’s oxidation that takes place during the 

growth. 
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ABSTRAK 

 Logam-oksida, iaitu zink oksida (ZnO) berstruktur nano dan filem nipis di 

atas grafin amat menarik kerana ia boleh menawarkan fungsi tambahan kepada grafin 

untuk merealisasikan aplikasi elektronik dan optoelektronik maju. Grafin mempunyai 

potensi besar untuk peranti elektronik novel kerana mobiliti elektrik yang luar biasa 

melebihi 10
4
 cm

2
/Vs dan kekonduksian terma 10

3
 W/mK. Oleh itu, dengan ciri-ciri 

elektrik dan haba yang sangat baik dari lapisan grafin, struktur hibrid ZnO/grafin 

dijangka menawarkan banyak aplikasi peranti canggih. Dalam kajian ini, 

pertumbuhan ZnO bebas  pemangkin/benih di atas grafin berlapisan tunggal (SL) dan 

lapisan berganda (ML) menggunakan penyejatan haba Zn dalam kehadiran oksigen 

(O2) gas telah dilakukan. Kesan suhu substrat, kedudukan dan ketebalan substrat 

grafin pada sifat-sifat morfologi, struktur, dan optik didapati sangat ketara. Pada 

dasarnya, struktur ZnO yang tumbuh menunjukkan tiga struktur berbeza, iaitu 

nanokluster, nanorod, dan filem nipis masing-masing pada 600°C, 800°C, dan 

1,000°C. Dengan menetapkan substrat condong pada 90°, pertumbuhan struktur-

struktur nano ZnO iaitu nanokluster dan nanorod pada SL grafin telah berjaya 

direalisasikan pada suhu 600°C dan 800°C. Walau bagaimanapun, tiada pertumbuhan 

dicapai pada 1,000°C berkemungkinan akibat daripada pengoksidaan grafin yang 

teruk. Untuk pertumbuhan di atas ML grafin pada 600°C dengan sudut kecondongan 

90°, pertumbuhan menunjukkan struktur kelompok yang sangat tebal dan berterusan 

berbanding dengan pertumbuhan pada sudut kecondongan substrat 45°. Selain itu, 

tapak struktur nanorod yang tumbuh pada 800°C dengan sudut kecondongan 90° 

juga menjadi lebih tebal berbanding 45°, walaupun kepadatan dan nisbah aspek 

hampir tidak berubah. Struktur morfologi pada 1,000°C dengan sudut kecondongan 

90° tidak menunjukkan perbezaan yang signifikan berbanding 45°. Nisbah keamatan 

UV (IUV) dan sinar nampak (IVIS) berubah bergantung kepada suhu. Struktur yang 

tumbuh pada suhu rendah daripada 600°C menunjukkan nilai tertinggi IUV / IVIS iaitu 

16.2, yang hampir dua kali lebih tinggi daripada struktur yang tumbuh di atas SL 

grafin, menunjukkan sedikit kecacatan struktur. Daripada keputusan yang diperolehi, 

dapat disimpulkan bahawa suhu di bawah 800°C, kedudukan substrat condong pada 

90 ° arah aliran gas, dan ML grafin seolah-olah menjadi parameter terbaik untuk 

pertumbuhan struktur ZnO oleh penyejatan haba kerana faktor-faktor ini boleh 

digunakan untuk mengatasi masalah pengoksidaan grafin yang berlaku semasa 

pertumbuhan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research background 

 

 We are currently living in the age of silicon nanotechnology. Silicon (Si) 

based transistor drives a modern computing revolution year by year. The size of a 

transistor has been reduced consistently which allows more transistors to be packed 

onto a single chip, thereby increasing a computer power. This follows the Moore's 

Law, according to which the number of transistors on a chip is doubling 

approximately once every 2 years. Principally, the miniaturization of a transistor is 

known to be very helpful in increasing an overall efficiency of the silicon ultra-large-

scale integrated circuits (Si-ULSIs). However, this unceasing miniaturization of 

transistors is becoming increasingly difficult owing to the several limitations such as 

short channel effect and gate leakage current etc. 

 In recent years, a concept of the advanced heterogeneous integration of the Si 

platform has attracted much attention towards the recognition of a ‘More than 

Moore’ technology [1]. To realize such technology, a growth of the high-quality 

elements (i.e., germanium (Ge) [2]) compound semiconductors (i.e., gallium arsenide 

(GaAs) [3], gallium nitride (GaN) [4], silicon carbide (SiC) [5]), metal oxides (i.e., 

zinc oxide (ZnO) [6]), and carbon-based materials (i.e., graphene [7], carbon 

nanotube (CNT) [8]) on the Si platform is highly required. The co-integration of 

these materials enables the present ultra-large-scale integrated circuits (ULSIs) to be 

facilitated not only with ultra-high speed complementary metal-oxide semiconductor 
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(CMOS) transistors and novel transistors, [9] but also with the various kinds of 

functional devices, such as optical devices [10], photodetectors [11], solar batteries 

[12], and sensors [13,14]. An Intelligent system-on-chip (i-SoC) on the Si is 

considered as a practical and promising direction. However, for the fabrication of 

electronic devices, an electronic insulation of these materials and the Si substrate by 

insulator such as silicon dioxide (SiO2) is necessary. It is worth noting that, the 

growth of highly crystalline and highly oriented material on insulator is a challenging 

task towards the realization of such advanced hybrid integration on the Si platform. 

There is a need of some great development in the field of growth technologies. 

Hence, this study is going to initiate an innovative technique to grow ZnO on an 

insulator by utilizing graphene as a template layer. Figure 1.1 illustrates an evolution 

of the Si based nano-electronics devices. 

 

Figure 1.1  Evolution of Si-based nano electronics [15] 

1.2 Research motivation 

 Since a decade ago, intensive researches have been focused on fabricating 

one-dimensional (1D) zinc oxide (ZnO) semiconducting nanostructures because it 

can provide a variety of important applications due to their unique morphologies, 



3 
 

compositions, and chemical/physical properties [6,16]. Besides that, ZnO possesses 

wide band gap and large exciton energy and it is considered to be a promising 

candidate for the fabrication of several kinds of devices.  

 Meanwhile, at a room temperature (RT), the graphene retains a high carrier 

mobility of up to 200,000 cm
2
/Vs [17], which can provide  a long mean free path of 

1.2 μm at a carrier concentration of 2 × 1011 cm
-2

. At RT also, the quantum Hall 

effect exist in graphene, owing to ballistic transport of electrons and holes [18]. This 

ability makes graphene suitable for use in various ballistic device applications. It has 

also been observed that the graphene possesses a very high thermal conductivity 

(~5000 W/mK) [19-23]. Since graphene is an excellent conductor and transparent 

material, the hybrid structure of ZnO/graphene shall lead to several device 

applications not only on Si substrate but also on other insulating substrates such as 

transparent glass and transparent flexible plastic  

 As mention previously, the growth of semiconductor materials on an insulator 

such as SiO2 is challenging due to its amorphous structure. Therefore, an 

introduction of graphene as a template layer is a promising candidate to overcome 

this issue. The feasibility of growing, highly oriented single crystalline ZnO is one of 

the main reasons of utilizing graphene as a buffer layer. The graphene consists of a 

two-dimensional hexagonal network of carbon atoms which is formed by making 

strong triangular σ-bonds of the sp2 hybridized orbitals. It is worth noting that the 

atomic arrangement of graphene is similar to the (111) plane of zinc blence structure 

and c-plane of a hexagonal crystalline structure which makes the growth of 

semiconductor nanostructures and thin film on graphene feasible. 

 In this study, the formation of ZnO nanostructures on the graphene/SiO2/Si 

substrates by the thermal evaporation process without any assist form catalyst is 

carried out. The growth of ZnO nanostructures on the graphene is carried out by 

using a simple thermal evaporation of Zn powder and oxygen (O2) gas under the 

atmospheric pressure. The optimization of growth parameter such as substrate 

temperature, oxygen flow rate, substrate inclination angles and graphene thickness 

were investigated. Finally, the morphological, compositional, crystallographic and 
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optical properties of the as-grown ZnO nanostructures are systematically 

characterised. The possible growth mechanism for the different geometrical 

morphologies of the nanostructure is also proposed. 

1.3 Objectives 

 To synthesize high density ZnO nanostructures on the graphene/SiO2/Si 

substrate by thermal evaporation technique 

 i) To investigate the effect of oxygen flow rates, substrate temperatures

  substrate inclination angles and graphene thicknesses on the surface 

  morphology, compositional crystallographic and optical properties of  

  ZnO nanostructures. 

 ii)  To propose the reasonable growth mechanism based on the obtained 

   results. 

1.4 Research activities 

 

The implementation of this study has been summarized into a flowchart as 

shown in Figure 1.2. This study is focused on the growth of one dimensional (1D) 

ZnO nanostructures on the graphene by the thermal evaporation process without any 

assistance of a catalyst. The growth was carried out by the thermal evaporation 

technique in a dual zone furnace. Firstly, the growth of ZnO nanostructures was 

investigated by varying the growth parameters (i.e. substrate temperatures, oxygen 

flow rates, and substrate inclination angles and graphene thickness). The 

morphological and elemental analysis of the grown ZnO nanostructures were 

performed by using the field emission scanning electron microscopy (FESEM) 

equipped with the electron dispersive spectrometer EDS. The crystallographic 

properties were investigated using x-ray diffractometer (XRD) and the optical 

properties are characterized using photoluminescence (PL) spectrometer. The 

possible growth mechanism was proposed based on the obtained morphology. 
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Figure 1.2 Research activities  

 

 

1.5 Thesis organization 

 This thesis has been organized into 5 chapters. Chapter 1 gives an overview 

of the research background and motivation of the study. The objectives and research 

activities of the present work are also presented in this chapter. 

 In chapter 2, an overview of the basic material properties of ZnO is presented. 

The structural, electronic and optical properties of ZnO are described in order to 

provide an in-depth knowledge of the ZnO materials. This chapter also explains the 

material properties of graphene and its structural properties. The hybrid integration 

of the ZnO and graphene and its possible applications are also presented. Besides 

that, a brief description of the methods that is widely used to grow the ZnO 

nanostructures, as well as its potential applications in the optoelectronic devices were 

described. 
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 In chapter 3, the properties of graphene substrate that have been used in this 

work are described. The growth of ZnO nanostructures on the substrates by a simple 

thermal evaporation process without any catalyst and the characterization techniques 

employed are also described in detail. 

 In chapter 4, the growth of ZnO nanostructure on the graphene by a thermally 

evaporated Zn powder in the presence of O2 gas is presented. The optimization of the 

growth parameter such as substrate temperature, oxygen flow rate, substrate 

inclination angles and graphene thickness were investigated. A basic study of the 

morphological, compositional, and crystallographic and photoluminescence 

properties of the grown ZnO are performed and the possible growth mechanism is 

also proposed in this chapter. 

  Finally, chapter 5 concludes the contributions of the present work and 

discusses the future research directions. 
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