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ABSTRACT 

In typical urban areas where buildings are built in clusters, wind pressure 

distribution of buildings is influenced by the interference effects from neighbouring 

buildings, which consequently affect wind-induced ventilation in buildings. This 

study was aimed to investigate the relationship between two geometric parameters of 

idealized urban arrays and mean pressure distribution. Hence, numerical 

investigation was conducted using large-eddy simulation (LES) on six idealized 

urban cases. The first geometric parameter was packing density λp which is the ratio 

of planar area of buildings to the total surface area, and was used to designate six 

building arrays, between sparse and dense urban conditions i.e. 0.044 ≤ λp ≤ 0.391. 

The second geometric parameter was used to incorporate the heterogeneity of urban 

surfaces, defined by aspect ratio of building α (i.e. the ratio of frontal area to planar 

area of a building). Nine types of square-based buildings which were arranged 

randomly in staggered arrangement, have different values of α  ranged between 0.84 

(low-rise building) and 3.76 (high-rise building). Current results show that in denser 

arrays (i.e. λp ≥ 0.250), pressure drag which was calculated through mean pressure 

differences between windward and leeward sides of buildings, is dominated by   

high-rise buildings by up to 55%. Besides, effects of packing density are significant 

on low-rise buildings (i.e. α ≤ 2.64) since the interference effects are likely to 

intensify when distances between adjacent buildings become less mainly at height z 

below the building height average have. In addition, a linear relationship between α 

and averaged mean pressure difference is observed in all packing densities, 

particularly for high-rise buildings (i.e. α ≥ 3). The results obtained from this study 

are exclusive to random staggered arrays, but the findings are an important addition 

to understanding wind pressure distribution in idealized arrays resembling real urban 

condition. 
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ABSTRAK 

Dalam kawasan bandar yang tipikal di mana bangunan dibina secara   

berkelompok, taburan tekanan udara dipengaruhi oleh gangguan daripada keadaan 

bangunan yang berdekatan dan memberi kesan terhadap pengudaraan dalam 

bangunan. Penyelidikan ini bertujuan untuk mengkaji kaitan antara dua parameter 

geometrik bagi kawasan bandar ideal dan taburan tekanan udara. Oleh itu, simulasi 

berkomputer menggunakan model turbulen LES dijalankan bagi enam kes bandar 

ideal. Parameter geometrik pertama ialah kepadatan bandar λp iaitu nisbah antara luas 

tapak bangunan dengan luas lot kawasan bangunan. Ia mewakili kawasan bandar 

yang berkepadatan rendah ke kepadatan yang tinggi iaitu 0.044 ≤ λp ≤ 0.391. 

Parameter geometrik kedua mewakili ketidaksekataan ketinggian bangunan dan 

dinamakan sebagai nisbah aspek bangunan, α (nisbah antara luas tapak bangunan 

dengan luas permukaan hadapan bangunan). Sembilan jenis bangunan bertapak segi 

empat sama yang disusun secara rawak dalam susun atur yang dinamakan staggered, 

mempunyai nilai α yang berbeza iaitu dari 0.84 (bangunan rendah) hingga 3.76 

(bangunan tinggi). Hasil daripada LES menunjukkan bagi kes bandar yang padat 

(iaitu λp ≥ 0.250),  daya seretan yang dikira melalui perbezaan purata tekanan di 

antara permukaan bangunan bahagian hadapan dan belakang didominasi oleh 

bangunan-bangunan tinggi sehingga 55%. Selain itu, kesan kepadatan bangunan 

adalah ketara bagi bangunan rendah (iaitu α ≤ 2.64) mungkin kerana gangguan 

terhadap pergerakan udara menjadi  kritikal  apabila jarak di antara bangunan 

berkurangan terutamanya pada ketinggian z kurang dari purata ketinggian bangunan 

have. Tambahan pula, hubungan yang linear antara nilai α dengan perbezaan purata 

tekanan udara telah diperolehi, terutamanya bagi bangunan tinggi  (iaitu α ≥ 3) dalam 

semua kes λp. Data yang diperolehi adalah khusus kepada kajian bangunan yang 

dinamakan random staggered arrays, namun ini adalah penting bagi pertambahan 

kajian mengenai kesan taburan tekanan udara dalam kawasan bandar ideal yang 

menyerupai kawasan bandar yang sebenar.        
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

The development of urban areas has always been associated with its impact 

on the environment and living condition of people living in a city.  The energy 

demand in a city is costly and linked to the continuous supply of electricity to 

commercial and residential buildings running on air-conditioning systems 

(Santamorius et al., 2001).  In this regard, natural ventilation or wind-induced 

ventilation is a far cheaper and cleaner alternative to mechanical ventilation i.e. the 

air-conditioning system since it saves on energy and cost.  With the increasing 

demand of energy in proportional with the global population, natural ventilation is a 

practical approach to promote energy saving and environmental-friendly city.  

According to the Department of Economic and Social Affairs of the      

United Nations, almost half of the global population approximated at 7 billion in 

2010 lives in urban areas, and this is expected to keep growing.  This process is 

known as ‘urbanisation’ which results in more people migrating to cities, thus more 

activities conducted to sustain living.  The increase of anthropogenic activities                    

(e.g. transportation, consumption of electricity, waste disposal, etc.) in an urban area 

affects living condition of its inhabitants.  As a consequence from emissions of heat 

and gas, a microclimate change known as urban heat island (UHI) ensues, when the 

averaged temperature in a city is higher than in its surrounding area                   

(Chow and Roth, 2006; Sarkar and Ridder, 2010).  
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The continuous development of urban areas and growing urban population 

are two other possible indicators that the effects of UHI are getting alarming.  The 

increased temperature which leads to a living discomfort of  urban inhabitants has 

forced them to use more energy for cooling.  So, this research has taken a subtle 

approach by studying wind-induced ventilation in urban buildings.  The usage of 

heating, air conditioning, and ventilation (HVAC) systems is an example of 

expensive consumption of energy, such as in a tropical country like Malaysia  

(Saidur et al., 2007) and countries located in temperate climate regions like the USA 

and UK (Perez-Lombard et al., 2007).  By utilizing the wind-induced ventilation in a 

building particularly in tropical climate, the thermal load of the air-conditioning 

system will be reduced hence less energy consumed to operate it. 

 This study is therefore an important effort of investigating the effects of 

surrounding buildings in an urban area on wind-induced ventilation.  Although its 

positive impact may not be substantial and immediate, it is a promising investment 

without expensive spending on planning and maintenance.  In the future, with the 

optimization of wind-induced ventilation, it is expected that a well-ventilated city 

will lead to a sustainable environment and living condition with less dependency on 

mechanical ventilation. 

1.2 Problem Statement  

The effectiveness of wind-induced ventilation in urban buildings could assist 

with the reduction of energy consumption by mechanical ventilation systems.  

Therefore, the amount of heat released by the system into the urban environment 

may become less.  Not only that, it may also become the driving force for the 

transport of heat and gas away to the atmosphere.   

In an urban area where buildings are built in a cluster with random spacing, 

sheltering effects from neighbouring buildings are non-negligible.  This has an 

impact on wind pressure distribution around the buildings and ultimately, the 

effectiveness of wind-induced ventilation.  The relationship between wind pressure 
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distribution and the sheltering effect is therefore important.  In this regard, a 

geometric parameter, packing density (λp) which is the ratio of planar area of 

buildings to the total urban surface area was used to quantify the sheltering effect.  In 

addition, the heterogeneity of a typical urban surface, featured by the variation in 

building height, is nonetheless imperative to this research.  Therefore, another 

geometric parameter namely building's aspect ratio (α i.e. ratio of frontal area to the 

planar area of a building) was analysed and discussed in relation to wind pressure 

distribution.        

 In this study, the problem was investigated through computational fluid 

dynamics (CFD) simulation.  Several case studies of urban areas, each defined by λp, 

were simulated using numerical configurations from previous numerical studies 

which had been validated in the preliminary simulation of this study.  CFD results 

obtained were then used to estimate and study the effectiveness of wind-induced 

ventilation in urban buildings through detailed analysis of wind pressure distribution.    

1.3 Research Objectives 

Based on the problem statement above, there are three main objectives of this 

study: 

(i) To provide a database of wind pressure distribution of buildings in urban 

areas defined by different values of packing density; 

(ii) To estimate the effect of packing density on wind-induced ventilation in 

urban buildings; 

(iii)To study the relationship between wind pressure distribution and aspect 

ratios of buildings.   
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1.4 Research Question 

Based on the objectives stated above, three research questions were 

developed in this study:  

(i) How significant is the effect of packing density on pressure distribution of 

buildings? 

(ii) What is the relationship between packing density of urban arrays and 

wind-induced ventilation? 

(iii)What is the relationship between wind pressure distribution and aspect 

ratios of buildings?  

1.5  Scope of the Study 

The scope of this study is defined through the geometric parameters used to 

investigate wind-induced ventilation in building arrays.  Firstly, to demonstrate the 

effects of packing density, six values of λp were investigated in this study: 4.40%, 

8.20%, 17.0%, 25.0%, 30.9%, and 39.1%.  Secondly, the type of urban areas used 

was also fixed in terms of the arrangement of buildings and distribution of  

buildings’ heights.  These two conditions are essential to keep the direction of this 

study in the right path.  

1.6 Significance of the Study  

The importance of estimating wind-induced ventilation in an urban area is 

significant to a building design which in fact can influence the comfort of its 

inhabitants and may likely pose an impact on the overall urban microclimate 

(Yamamoto, 2006).   Furthermore, this study can contribute to the existing literature 

on wind-induced ventilation in urban buildings.           
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1.7 Limitations of the Study 

The estimation of wind-induced ventilation was based on the wind pressure 

distribution on urban buildings but the effect of thermal buoyancy was excluded 

primarily because buoyancy-driven ventilation is studied more effectively when 

indoor and outdoor conditions are considered (Andersen, 2003).  The urban buildings 

modelled and used in this study are solid-walled blocks and therefore, this study was 

not intended to analyze the internal flow and its properties inside the buildings.  

1.8 Thesis Structure 

The rest of the thesis is structured as follows.  Literature review on         

wind-induced ventilation is summarized and discussed in Chapter 2.  In Chapter 3, 

methodological approaches used in this study are explained.  Several sub-chapters on 

numerical settings, boundary conditions, CFD techniques etc. are organized for a 

detailed and comprehensive elaboration.  This also includes preliminary results for 

validation and comparison purposes.  In Chapter 4, results of the second-stage CFD 

simulation are presented.  This chapter is included with thorough analysis and 

discussion which are imperative to the objectives outlined in this study.  Lastly, in 

Chapter 5, conclusions of the study and recommendations for further works are 

presented. 
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