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ABSTRACT

Single cell analysis has become an important field of research in which cell
properties are studied for an improved understanding of cellular processes. Cell
intracellular temperature has proven to be a vital element in most cellular activates,
chemical reactions and cell survival. An integrated nanothermal sensor-microfluidic
system has been proposed to characterize the internal temperature of single cells.
A finite element analysis study based on resistance temperature detectors has been
studied. The first stage was to optimize the sensor design and dimensions where
tungsten was chosen as a sensing material. Results show that a rectangular shape with
a gap of 10.8 µm gave an equally distributed current density within the sensor, and
90 nm2 cross sectional area caused minimal damage to the cell. Further mechanical
characterization has been done and the results show that the nanoneedle could resist
ramp force applied before failure, up to 22.5 µN. The second stage was to test the
nanoneedle ability to measure the temperature of a cell. Electrical measurement
on yeast cell was done and the results show that the nanoneedle conductivity was
independent of cell conductivity. The nanoneedle proved to be able to measure the
temperature with a current difference of 50 nA and the resolution was 0.015 °C in
the range of 24-60 °C. The nanoneedle detected temperature change of 0.02 °C in 10
ms. The third stage was to integrate the nanoneedle with the microfluidic system and
to study water flow behaviour in the microfluidic channel. Results show that 63 µm2

microchannel cross sectional area was optimum and flow rate of 24.6 pl/min allowed
successful cell penetration with minimal cell damage. The developed system can be a
good candidate to be used in early disease diagnoses. Also, the system has the potential
to measure electrical properties of cells and to be used for single cell drug delivery.



vi

ABSTRAK

Analisis sel tunggal telah menjadi satu bidang yang penting dalam penyelidikan
di mana pencirian sel dikaji bagi memahami proses selular dengan lebih baik. Suhu
intraselular sel telah terbukti merupakan elemen penting dalam kebanyakan aktiviti
selular, tindak balas kimia, dan kelangsungan hidup sel. Suatu sistem bersepadu
pengesan nanoterma-microfluidic telah dicadangkan untuk mencirikan suhu dalaman
sel tunggal. Suatu kajian analisis unsur terhingga berdasarkan rintangan pengesan
suhu telah dijalankan. Peringkat pertama adalah pngoptimuman reka bentuk sensor
dan dimensi di mana tungsten telah dipilih sebagai bahan penderiaan. Keputusan
menunjukkan bahawa bentuk segi empat tepat dengan jurang sebanyak 10.8 µm
memberi ketumpatan arus sekata diedarkan dalam sensor, dan 90 nm2 kawasan keratan
rentas menyebabkan kerosakan minimum kepada sel. Pencirian mekanikal lanjut telah
dilakukan dan keputusan menunjukkan bahawa, nanoneedle yang dapat menahan daya
tanjakan digunakan sebelum kegagalan, sehingga 22.5 µN. Peringkat kedua adalah
untuk menguji keupayaan nanoneedle untuk mengukur suhu sel. Pengukuran elektrik
pada sel yis yang telah dilakukan dan keputusan menunjukkan bahawa kekonduksian
nanoneedle itu tidak dipengaruhi oeh kekonduksian sel. Nanoneedle terbukti dapat
mengukur suhu dengan perbezaan semasa 50 nA dengan resolusi 0.015 °C dalam
lingkungan 24-60 °C. Nanoneedle berupaya mengesan perubahan suhu sebanyak 0.02
°C dalam 10 ms. Peringkat ketiga adalah untuk mengintegrasikan nanoneedle dengan
sistem microfluidic dan mengkaji sifat aliran air dalam saluran microfluidic. Hasil
kajian menunjukkan bahawa luas keratan rentas 63 µm2 mikro adalah optimum dan
kadar aliran sebanyak 24.6 pl/min berjaya membenarkan penembusan sel dengan
kerosakan sel yang minimum. Sistem yang dibangunkan boleh menjadi calon yang
baik untuk digunakan dalam diagnosis penyakit awal. Selain itu, sistem ini mempunyai
potensi untuk mengukur sifat elektrik sel dan digunakan untuk penyampaian ubat
kepada sel.
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CHAPTER 1

INTRODUCTION

1.1 Research background

Traditional microbiological studies have been done at a population level in
which information on how cells interact with each other, react to external stimuli
and undergo complex processes such as gene expression was always obtained from
population study data [1]. However, such information does not consider the identity
and the importance of individual cells, which may lead to low level of precision
and accuracy in the resulted data. The recent emerging techniques that have higher
sensitivity and the need for cellular heterogeneity has driven research towards focusing
on developing techniques that support the study of individual cells. Single cell analysis
has become an important field of research that allows the differentiation between cells
in living organisms and the ability to relate them to different biological functions and
disease progression. Different cell properties such as electrical [2-4], mechanical [5-7]
and thermal [8-10] are currently being studied for individual cell profiling that can help
in the identification of rare cell types and identify the health condition of specific cells
that has the potential for early disease diagnosis applications.

1.2 Temperate effect on cells and natural systems

Temperature is an important physical property of a matter that can determine
the internal energy contained within a system; it can be defined as the measurement
of the average kinetic energy of molecules in an object or system. It plays an
important role governing many physical and chemical processes humans and plants
undergo throughout their lifecycles [11-14]. For instance, in plants when increasing
the temperature, a noticeable growth is observed in specific areas as compared to the
rest of the plant such as, elongation in stem, growth in the leaf area, and the plant
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biomass [15]. In humans, the environmental temperature shows a direct relationship
with the rate of food consumption by humans. During the summer the rate of food
intake is considered lower compared to days when the weather is cold. This is due to
the difficulties the body undergoes when trying to lose heat to the surroundings. On
the other hand, in winter the body needs extra heat to protect itself against hypothermia
[16].

A single cell level, temperature shows the ability to differentiate cells with an
abnormality i.e. cancerous cells and cells that are healthy. The human body is made up
of billions of cells that grow and divide to produce more cells to keep the body healthy.
However, sometimes cells become sick when the genetic material (DNA) is damaged
or changed and cause mutations that affect normal cell growth and division. This
process of mutation is accompanied by extraordinary heat production, which makes
the internal cell temperature higher compared to the healthy cells. These mutated
cells tend to become dangerous after several divisions, usually at that late stages when
patients seek medical attention, but in most cases it is too late to be cured. Being able
to measure the temperature of a cell at early stages of division can help in the early
disease detection and probably save many lives [17].

1.3 Problem statement

Many attempts have been carried out in order to determine the internal
temperature of single cells. Some of these techniques rely on materials that use the
fluorescence properties as the determining factor with the change of the temperature.
These sensors tend to show a high level of sensitivity. However, several factors still
discourage their use, for instance, photo-bleaching in which the fluorescence is lost
through irreversible alteration of the sensor’s molecular structure by photo-damage,
enzymatic degradation, and chemical damage [18], the insertion of material into the
cell and the movement of material inside cell which can damage the cell [19], and the
possible of toxicity due to the material degradation [20, 21].

There are few other attempts to measure the internal temperature that are not
based on the luminescence properties [22]. However, such methods depend on the
use of bulky operating systems that need highly trained operators and a constrained
experimental environment. These systems are with no doubt important because of their
novelty, but their significance can only be evident in the early stages of conducting a
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research. These systems require upgrading and further improvements otherwise can
be very time consuming, impractical and costly. Also the need for highly skilled
operators makes them inefficient and not user-friendly. Besides, some of these systems
are restricted to specific cell types which limit their implementation diversity.

The need to develop a system that has the ability to improve single cell
studies is critical in the upcoming years of research by being portable, easy to use,
inexpensive, and produces quantitative results in a prompt manner that does not require
user interpretation.

1.4 Significance of the project

This project focuses on developing a nano-thermal sensor microfluidic system
that can measure the internal temperature of a variety of single cells efficiently and in
a more manageable procedure. The use of microfluidic devices facilitate sequential
sample pre-treatment and increase sample throughput through parallel analysis. They
also have added the advantages of improved portability due to miniaturization, reduced
sample and reagent consumption, and accelerated speed of reaction and analysis [23,
24].

By knowing the temperature of a single cell, several important advancements
in the fundamentals of cell biology and its cellular activities can be investigated. Heat
generation inside cells has been used as one of the measures to understand the function
of all constituent parts of living organisms and, ultimately, understand the chemistry
of life.

Integrating a nano-thermal sensor into a microfluidic chip can facilitate the
research studies and allow the researchers to carry out experiments in a more
convenient way without the need of using bulky equipment. In addition, this system
has the potential to be used for many other applications, for instance, early disease
diagnoses, drug delivery, and many others. It will help produce a device that has
multiple implementations and high reproducibility in a short time.
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1.5 Objectives of the project

The main objective of this project is to develop an integrated nanoneedle-
microfluidic system for measuring single cell temperature. The sub objectives are as
follows:

• To design and optimize a thermal nano-sensor for single cell’s internal
temperature measurement.

• To integrate the nano-sensor with a microfluidic system.

• To measure the internal temperature of a single cell using the integrated thermal-
microfluidic system.

1.6 Scope of the project

The project is simulation based study that is mainly about designing and
optimizing a thermal nano-sensor that measures the internal temperature of single
cells. It is divided into three main parts: firstly, the sensor design and optimization
which covers the shape, dimensions and structure of the sensor. It also includes the
electrical and mechanical characterizations of the sensor. The second part is about
the electrical characterization of a cell and the nanoneedle ability to measurement the
temperature. The third part covers the integrating of the sensor into a microfluidic
channel which study the water flow direction, water flow rate in the proposed channel
design. The research study was done using a finite element analysis and designing
softwares, mainly ABAQUS and Solidworks, and the cell model used was based on
Saccharomy cerevisiae (2.5.2).

1.7 Organization of the thesis

The thesis is divided into 6 chapters. First chapter is an introduction of the
project, explaining the problems and motivations that encouraged to conduct this
research, objectives and the scope of the research. The second chapter is a thorough
discussion of the current techniques used in the single cell intracellular temperature
measurements with a table that summarize the advantages and disadvantages of
the conventional techniques, and theoritical studies explaining different sensing



5

mechanisms. The third chapter is a discussion on the methodology undertaken
during the research with a detailed explanation on the system concept and the
reasons for selecting of each part. The forth chapter is the nanoneedle design
and characterization which covers topics in the thermal/electrical and mechanical
characterization of the nanoneedle and cell temperature measurement. The fifth
chapter is the microfluidic channel integration discussing the parameters needed in the
integration of the nanoneedle microfluidic system. The last chapter is the conclusion
and future recommendations for this research.
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