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ABSTRACT 

 

 

Forecasting is an important element in an airline industry due to its capability 

in projecting airport activities that will reflect the relationship that drives aviation 

activities. A wavelet-support vector machine (WSVM) conjunction model for 

revenue passenger enplanements forecast is proposed in this study. The conjunction 

model is the combination of two models which are Discrete Wavelet Transform 

(DWT) and Support Vector Machine (SVM). The method is then compared with 

single SVM and Seasonal Decomposition-Support Vector Machine (SDSVM) 

conjunctions. Seasonal Decomposition (SD) readings are obtained through X-12-

ARIMA. The monthly domestic and international revenue passenger enplanements 

data dated from January 1996 to December 2012 are used. The performances of the 

three models are then compared utilizing mean absolute error (MAE), mean square 

error (MSE) and mean absolute percentage error (MAPE). The results indicate that 

WSVM conjunction model has higher accuracy and performs better than both basic 

single SVM and SDSVM conjunctions. 
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ABSTRAK 

  

 

Proses ramalan merupakan elemen penting dalam industri penerbangan 

kerana melalui proses ini, segala hubungkait antara aktiviti di lapangan terbang yang 

mempengaruhi aktiviti penerbangan dapat dilihat. Model gabungan gelombang-

mesin vektor sokongan (WSVM) bagi meramal pendapatan daripada bilangan 

penumpang yang menaiki pesawat dicadangkan dalam kajian ini. Gabungan tersebut 

adalah daripada dua model iaitu gelombang singkat diskrit (DWT) dan mesin vektor 

sokongan (SVM). Model yang dicadangkan kemudiannya dibandingkan dengan 

model SVM tunggal dan penguraian piawai – mesin vektor sokongan (SDSVM). 

Bacaan daripada penguraian bermusim (SD) diperoleh dengan menggunakan kaedah 

X-12-ARIMA. Dalam kajian ini, data bulanan yang digunakan untuk meramal 

pendapatan daripada bilangan penumpang yang menaiki pesawat adalah jumlah 

pendapatan daripada penumpang yang menaiki pesawat bagi penerbangan domestik 

dan antarabangsa masing-masing  dengan julat masa dari Januari 1996 hingga 

Disember 2012. Prestasi setiap model dinilai berdasarkan bacaan purata ralat mutlak 

(MAE), purata ralat kuasa dua (MSE) dan purata peratusan ralat mutlak (MAPE). 

Keputusan perbandingan antara semua model menunjukkan bahawa model WSVM 

mempunyai prestasi yang baik berbanding model SVM tunggal dan model gabungan 

SDSVM.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of the Study 

 

 Forecasting is an important element in airline industry due to its capability in 

projecting airport activity that will then reflect the underlying causal relationship that 

drives aviation activity. Aviation activity levels are resulted from the interaction of 

demand and supply factors. The demand for aviation is mostly a function of 

demographic and economic activity. Activity levels are influenced by supply factors 

such as cost, competition and regulations. 

 

 Normally, passenger enplanements can be modelled as a function of variables 

such as real personal income and real yield. The number of commercial operations, 

in turn, is a function of passenger enplanements as well as operational factors 

including average load factors and average seats per aircraft. Thus, local population 

and income levels, the cost of flying, and the number of based aircraft at the airport 

are examples of elements that can determine a general aviation activity. 
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 Generally, forecasters evaluate the projections of aviation activity that result 

from applying appropriate forecasting methods and its relationships before they are 

finalized. Other than providing a means for developing quantifiable results, aviation 

forecasters use forecasting methods and their professional judgement to determine 

what is reasonable. Thus, making the evaluation forecast results an essential part of 

the forecasting process (GRA Inc., 2001). 

 

 The level and type of aviation activity expected at the airport, as well as the 

nature of planning being done determine the parameters that needed to be forecast. 

The level and type of aviation demand generated at the airport that are measured by 

aircraft operations is mainly the most important activity forecast for airfield 

planning. This is due to this demand that defines the runway and taxiway 

requirements. Runway and taxiway improvements are one of the dominant categories 

of airport improvement funding provided through the Federal Aviation 

Administration (FAA). For airport that is served by commercial air carriers, another 

important activity measure is the level of commercial passenger enplanements 

because it assists in determining the size of the terminal, the number of gates, and 

other important elements of airport infrastructures. A number of aviation planning is 

conducted on a regional basis and would include both regional demand and the 

distribution of demand among airports in the region. Other planning requires detailed 

analysis of enplanements and aircraft movements by city-pair. In planning a hub 

airport, detailed network analysis of the hub and spoke system of service may be 

involved. 

 

 Developing forecast of commercial activity is represented by passenger 

enplanements, operational factors and operations. Although primary forecast need 

may be aircraft operations, the forecast for commercial airports should begin with 

projecting air carrier and commuter enplanements and then apply forecast of average 

seats per aircraft and average load factor by category in order to develop air carrier 

and commuter operations. 
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 FAA Aerospace Forecasts done by FAA is a forecast of national level U.S.A. 

aviation demand. The study provides a 12-year outlook and is updated each year in 

March (FAA, 2001). It is classified as the official FAA view of the immediate future 

aviation. Aggregate level forecast of passenger enplanements, revenue passenger 

miles, fleet, and hours flown for large air carriers and regional/commuters are also 

included. Another study done by FAA is the FAA Long Range Aerospace Forecasts 

which is a long-range forecast that extends the 12-year forecast to a longer time 

horizon for a period of 25 years (FAA, 2000). The forecast contains projections of 

aircraft fleet and hours, air carrier and regional/commuter passenger enplanements, 

air cargo freight revenue ton-miles, pilots, and FAA workload measures. 

 

 GRA Inc. (2001) stated that forecasting method used is not the main concern 

in forecasting aviation demand due to the behaviour of data used. Different types of 

data require suitable forecasting methods that can satisfy every criteria and its 

behaviour. When the variables are finalized, only then appropriate methods is 

selected to develop the forecast for the airport’s forecasting. Incorporating an 

analysis of local and regional socioeconomic is very useful. This includes historical 

and forecast data on variables such as population, revenue, and employment. 

 

 In forecasting, trend analysis is also a part of the process. Trend analysis 

relies on projecting historic trends into the future. A regression is used with time as 

the independent variable in trend analysis. This is one of the fundamental techniques 

used to analyse and forecast aviation activity. It is often used as a back-up or 

expedient technique but it is highly valuable because of its simplicity when applying. 

In certain time, trend analysis is used as a reasonable method of projecting variables 

that would be very complicated and costly to project by other means. 

 

 After the list of forecast elements has been identified, appropriate forecasting 

methods is then selected with gathered data, the methods then need to be applied in 

order to obtain the forecast of aviation activity. The results evaluation process is 

essential. A useful step in evaluating the results is to graph key forecast results 
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against historic data trends. This is to determine whether the forecast appear 

reasonable. 

 

Air passenger traffic forecast provides a concrete basis for planning decisions 

in air transport infrastructure for civil aviation authorities. For example, the Civil 

Aviation Authority (CAA) in United Kingdom has the responsibility for regulating 

the air transport industry in the UK and advising the government’s Department of the 

Environment, Transport and Regions (DETR) on air transport matters (Grubb and 

Mason, 2001) DETR is then presented the national forecasts periodically for the 

future demand for air travel, by passenger numbers, at UK airports as a whole since 

1980s.  

 

The quantitative forecasting models falls into two categories which are 

econometric modelling and forecasting but little attention has been paid on time 

series models in air passenger traffic forecasting. Recent research on modelling time 

series with complex nonlinearity, dynamic variation, and high irregularity provided 

two promising directions. Firstly is to establish emerging artificial intelligence 

models such as artificial neural networks (ANN), support vector machine (SVM) and 

genetic programming (GP). Secondly is to integrate data decomposition techniques 

such as empirical model decomposition (EMD) or ensemble empirical mode 

decomposition (EEMD) into a unified modelling framework to forecast complex 

nonlinear time series with great fluctuation and irregularity. Xie, Wang and Kin 

(2013) also did a study on air passenger forecasting using hybrid seasonal 

decomposition (SD) and least squares support vector regression (LSSVR) approach. 

 

 Air transportation has grown considerably around the world due to increment 

of revenues and populations, and the change of the industry’s structure. An example 

is the competition between high-speed railroad service and air transport (Park and 

Ha, 2006). Therefore, air passenger forecasting can provide a key input into decision 

of daily operation management and infrastructure planning of airports and navigation 

services, and for aircraft ordering and design (Scarpel, 2013). Thus, enhanced 
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forecasting tools are to be used to satisfy the new conditions of airlines and airports. 

SVM has been proven to possess excellent capability for classification and prediction 

by minimizing an upper bound of the generalization error (Vapnik, 1995).  

 

For this present study, a similar case of passenger enplanements forecasting is 

studied but in term for its monthly revenue. The data are distributed by months for 

each year involved. It second the above statement stating that the need of revenue 

passenger enplanements forecasting is to assist the aviation activity for it being able 

to optimize its system or to plan for future expansion or reduction. Thus, makes it a 

major importance in planning an aviation activity. 

 

 The application of wavelet transform for analyzing variations, periodicities, 

trends in time series has received much attention in recent years (Smith et al., 1998). 

Discrete Wavelet Transform (DWT), a technique with a mathematical origin, is very 

appropriate for noise filtering, data reduction and singularity detection which makes 

it a good choice for time series data processing. DWT is a powerful tool for a time-

scale multiresolution analysis on time series and has been used to break down an 

original time series into different components, each of which may carry meaningful 

signals of the time series (Chaovalit et al., 2011). For example, a time series with a 

frequency of five event occurrences per minute represents an interval (scale) of 12s 

between events. Since DWT is a data transformation technique that produces a new 

data representation which can be dispersed to multiple scales, the analysis of the 

transformed data can also be performed at multiple resolution level. Partal and 

Kucuk (2006) used a DWT for determining the possible trends in annual total 

precipitation series. 

  

In this study, an attempt to use a Wavelet-Support Vector Machine (WSVM) 

conjunction model to forecast the revenue passenger enplanements time series data. 

SVM offers remarkable generalization performance in many areas such as pattern 

recognition, text classification and regression estimation (Asefa et al., 2006). Feng et 

al., (2010) stated that SVM has become a popular tool in recent years in pattern 
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recognition and machine learning. SVM is used for classification problems and its 

goal is to optimize “generalization” (Cristianini and John, 2000). Fernandez (2007) 

used Wavelet-and-SVM-based forecasts to analyse U.S. metal and materials 

manufacturing industry. Turkoglu and Avci (2008) used the same approach, WSVM, 

but it was applied towards fuzzy inference system for texture classification. Both 

studies compared their WSVM model with other benchmark models based on their 

performance criteria and the outcomes are the same; where WSVM won against 

other benchmark model such as ARIMA (Fernandez, 2007; Turkoglu and Avci, 

2007). 

 

 

1.2 Problem Statement 

 

 In the nascent years of airline Revenue Management (RM) system, American 

Airlines once simplistically described the developing practice as “selling the right 

seats to the right customers at the right prices” (Smith et al., 1992). This was and still 

is the goal of Revenue Management. A generation ago, RM could have been 

considered a narrow area of interest to academics and airline operations enthusiasts; 

it was somewhat of a curiosity in the heavily regulated industry where airlines had 

minimal control over fares and booking methods. Today, RM is an indispensable 

tool, as nearly every carrier in the world seeks to maximize passenger revenue by 

extracting fares at customers’ highest willingness-to-pay (WTP). Following 

deregulation of the US airline industry in 1978, airlines faced two choices: either 

adaptation to a new business environment – one without artificial limits on 

competition – or obsolescence. And just as the nimble airlines once developed 

creative new RM approaches to confront wholesale changes in the business of a new 

competitive environment – one where the assumptions previously made about 

customers’ booking habits have been invalidated. The simplification of traditional 

fare structures is common in today’s air transportation marketplace. The crucial 

question that in RM: what kind of demand can be expected for this flight? 

Forecasting is the process of quantitatively estimating the expected demand for a 
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particular service and relies on bookings for previous or current similar services 

(Reyes, 2006).  

 

In this study, an attempt in applying SVM on revenue passenger 

enplanements forecasting is done. Support vector machine (SVM) is considered one 

of the soft computational techniques that have been successfully used in various 

research areas (Vapnik et al., 1996; Yoon et al., 2004; McNamara et al., 2005; Awad 

et al., 2007; Kaheil et al., 2008; Gao et al., 2010).  This was brought about by the 

remarkable characteristics of SVM such as good generalization performance, the 

absence of local minima and sparse representation of solution. Another key 

characteristic of SVM is that training SVM is equivalent to solving a linearly 

constrained quadratic programming problem so that the solution of SVM is always 

unique and globally optimal, unlike other networks’ training SVM which requires 

nonlinear optimization with the danger of getting stuck into local minima. In SVM, 

the solution to the problem is only dependent on a subset of training data points 

which are referred to as support vectors. Using only support vectors, the same 

solution can be obtained as using all the training data points. Although SVMs have 

good generalization performance, they can be abysmally slow in test phase (Burges, 

1996; Osuna and Girosi, 1998). From a practical point of view, the most serious 

problem with SVM is the high algorithmic complexity and extensive memory 

requirements of the required quadratic programming in large-scale tasks (Horváth, 

2003). 

 

 Recently, wavelet transform is widely known for its capability in analyzing 

variations, periodicities trends in time series. It also allows decomposition of a signal 

into different levels of resolution scales where required data components can be 

extracted. Choi, Yu and Au (2011) used DWT to decompose time series data into 

several scales, where both the coarse and fine parts of the data are obtained. The 

coarse scales (approximated) reveal the trend, while the fine (detailed) scales tend to 

be related to seasonal influences and exogenous variables. Usually, the extracted data 

gain from wavelet transform become input to the model applied. Thus, the ability 
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wavelet transform has become a major reason in improving the ability of model 

applied predictions. 

 

The term conjunction or hybridization of at least two forecasting models is 

the trend nowadays. The reason is that it improves the performance of singular 

forecasting method. Thus, in this study, a conjunction model between Discrete 

Wavelet Transform (DWT) and SVM is proposed to model the revenue passenger 

enplanements forecasting. The goal of this thesis is to answer the following question: 

Does hybrid forecasting lead to revenue passenger enplanements improvement over 

singular forecasting? 

 

 

1.3 Objectives of the Study 

 

 In view of the problems mentioned, this study is intended to propose a 

WSVM revenue passenger enplanements estimation for U.S.A. airports for domestic 

and international flights. The objectives of the study are as follows: 

 

i. To explore the potential application of SVM model for revenue passenger 

enplanements forecasting 

 

ii. To propose a conjunction model for revenue passenger enplanements by 

combining DWT and SVM 

 

iii. To compare the performance of the proposed conjunction model with 

other forecasting models such as singular SVM and SDSVM in terms of 

MAE, MSE and MAPE. 
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1.4 Scope of Study 

 

 In this study, the data used are secondary data that was obtained from 

Research and Innovative Technology Administration (RITA), Bureau of 

Transportation Statistics, T-100 Market and Segment, U.S. Air Carrier Traffic 

Statistics (www.rita.dot.gov/bts/acts). There are two data sets where one is the 

domestic flight and the other one is the international flight for revenue passenger 

enplanements. Both data sets are monthly data dated from January 1996 to December 

2012 which total to 204 data for each set.  

 

 The SVM models applied in this study are SVM2, SVM4, SVM6, SVM8, 

SVM10 and SVM12 before each performance is evaluated. For SDSVM, an 

application of X-12-ARIMA additive decomposition is used for data decomposition 

before it is combined with SVM. The DWT Daubechies wavelet was chosen as 

mother wavelet and DWT is decomposed using Mallat algorithm. One, two and three 

level decomposition of DWT were applied in this study. DWT is later combined with 

SVM forming a WSVM model. SVM and SDSVM are then used to compare their 

performance with WSVM. At the final stage, each model’s performance in 

estimating revenue passenger enplanements forecasting is evaluated by its mean 

absolute error (MAE), mean squared error (MSE) and mean absolute percentage 

error (MAPE). 

 

 

1.5 Significance of the Study 

 

 This research is to expect that the proposed model WSVM can be used as an 

alternative model compared to singular SVM and SDSVM because WSVM is an 

improvement of SVM model and due to its conjunction; it is supposed to outperform 
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SDSVM because wavelet decomposition is known to be better than seasonal 

decomposition (SD). 
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