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ABSTRACT 

 

 

 

 

A series of Eu3+ and Dy3+ co-doped strontium borophosphate ceramics were 

synthesized using solid-state reaction method at 1000 oC for 4 hours. The influence 

of strontium oxide composition on structural features of the borophosphate ceramics 

were investigated by using FT-IR spectroscopy. The addition of higher strontium 

oxide composition into the host ceramics matrix leads to an increase in ceramic 

network polymerization due to the replacement of bridging oxygen bonds by non-

bridging oxygen bonds. The crystalline phases of ceramics were characterized by X-

ray diffraction (XRD). XRD pattern revealed that strontium borophosphate ceramic 

existed in polycrystalline structure. Optimum composition was chosen from 

strontium borophosphate series based on the XRD and photoluminescence analysis. 

Eu and Dy were used as activator to enhance photoluminescence emission. The 

optimum composition determined from this study is 10SrO-40B2O3-50P2O5 codoped 

with 2 mol% of Eu3+ and 1 mol% of Dy3+. The result of this study shows that 

photoluminescence emission and UV excitation due to energy transfer occurred 

within Dy3+-Eu3+ pair ions under 350 nm and 394 nm excitation separately. The 

energy transfer between Dy3+ and Eu3+ takes place through resonant energy transfer 

mechanism. The prominent emission peaks of Eu3+ and Dy3+ co-activated strontium 

borophopshate ceramics were 484 nm, 574 nm, 613 nm, 660 nm and 697 nm which 

were assigned to transition of 4F9/2 → 6H15/2, 
4F9/2 → 6H13/2, 

5D0 → 7F2, 
4F9/2 → 6F11/2, 

and 5D0 → 7F4. Prominent hypersensitive dipole transition was affected by structural 

surrounding environment of activators and polycrystalline structural network. This 

study shows that a new polycrystalline strontium borophosphate ceramics doped with 

Eu and Dy is suitable for luminescent materials. 
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ABSTRAK 

 

 

 

 

Sampel seramik berdasarkan siri strontium borofosfat berdopkan Eu3+ dan 

Dy3+ telah dihasilkan dengan teknik tindak balas keadaan pepejal pada 1000 oC 

selama 4 jam. Pengaruh komposisi strontium oksida terhadap ciri struktur strontium 

borofosfat telah dikaji dengan menggunakan spektroskopi transformasi Fourier 

inframerah (FT-IR). Penambahan komposisi strontium oksida yang tinggi memberi 

kesan kepada matriks seramik hos iaitu meningkat polimerisasi rangkaian seramik 

kerana penggantian dari ikatan oksigen titian kepada ikatan oksigen tanpa titian. Fasa 

berhablur seramik telah dikaji dengan menggunakan teknik belauan sinar-X (XRD). 

Corak XRD menunjukkan struktur seramik tersebut adalah struktur polihablur. 

Komposisi optimum telah dipilih dari strontium borofosfat seramik berdasarkan 

analisis XRD dan fotopendarcahayaan. Eu dan Dy digunakan sebagai dopan bagi 

meningkatkan pancaran fotopendarcahaya. Oleh itu, komposisi optimum yang 

dihasilkan dari kajian ini ialah 10SrO-40B2O3-50P2O5 didopkan dengan 2 mol% Eu3+ 

dan 1 mol% Dy3+. Keputusan kajian ini menunjukkan bahawa pancaran 

fotopendarcahaya dan pengujaan UV menunjukkan pemindahan tenaga dalaman 

pasangan ion Eu3+-Dy3+ berlaku di bawah pengujaan  350 nm dan 394 nm masing-

masing. Pemindahan tenaga antara Eu3+ dengan Dy3+ berlaku melalui mekanisme 

pemindahan tenaga resonan. Puncak pancaran utama bagi Eu3+ dan Dy3+ 

mengaktifkan seramik strontium borofosfat ialah pada 484 nm, 574 nm, 613 nm, 660 

nm dan 697 nm yang berasal dari peralihan elektronik 4F9/2 → 6H15/2, 
4F9/2 → 6H13/2, 

5D0 → 7F2, 
4F9/2 → 6F11/2, and 5D0 → 7F4. Transisi dwikutub hiperpeka utama 

dipengaruhi oleh keadaan struktur mengelilingi dopan dan rangkaian struktur 

polihabluran. Kajian ini menunjukkan bahawa satu seramik polihabluran yang 

baharu dan sesuai dijadikan bahan pendarcahaya.   



viii 

 

 

TABLE OF CONTENTS 

 

 

 

 

CHAPTER                                           TITLE                                                   PAGE 

 

 

SUPERVISOR’S DECLARATION       ii 

AUTHOR’S DECLARATION      iii 

DEDICATION        iv 

ACKNOWLEGEMENT       v 

ABSTRACT        vi 

ABSTRAK                  vii 

TABLE OF CONTENT S                  x 

LIST OF TABLES                 xii 

LIST OF FIGURES                 xv 

LIST OF SYMBOLS                xvi 

LIST OF ABBREVIATIONS              xvii 

LIST OF APPENDICES               xviii 

 

  

1 INTRODUCTION       1 

1.0 Introduction       1 

1.1 Background of Study      1 

1.2 Statement of Problem      5 

1.3 Objectives of Study      6 

1.4 Scope of Study       7 

1.5 Significant of Study      7 

 

 



ix 

 

 

2 LITERATURE REVIEW       9 

2.1 Ceramic        9 

2.2 Borophosphate       10 

2.3 Photoluminescence      13 

2.4 Physical principle of excitation and emission of rare  

earth ion       16 

2.5 Energy Transfer      17 

2.6 Density        18 

 

3 METHODOLOGY       19 

3.1 Sample Preparation      19 

3.2 X-ray Diffraction Measurement    22 

3.3 Infrared Spectroscopy Characterization   23 

3.4 Luminescence Measurement     24 

 

4 RESULTS AND DISCUSSIONS     26 

4.1 XRD Analysis       26 

4.1.1 Strontium Borophosphate Ceramics Doped  

with Eu3+      26 

4.1.2 Strontium Borophosphate Ceramics Doped  

with Dy3+      30 

4.1.3 Eu3+ and Dy3+ Codped Strontium Borophosphate 

Ceramics      32 

4.2 IR Analysis       36 

4.2.1 Eu3+ Doped Strontium Borophosphate  

Ceramics      36 

4.2.2 Dy3+ Doped Strontium Borophosphate  

Ceramics      40 

4.2.3 Eu3+ and Dy3+ Codoped Strontium Borophosphate 

Ceramics      44 



x 

 

4.3 Photoluminescence Spectra Analysis    48 

4.3.1 Eu3+ Doped Strontium Borophosphate  

Ceramics      48 

4.3.2 Dy3+ Doped Strontium Borophosphate  

Ceramics      54 

4.3.3  Eu3+ and Dy3+ Codoped Strontium Borophosphate 

Ceramics      59 

 

5 CONCLUSION AND RECOMMENDATION   70 

5.1 Conclusion       70 

5.2 Recommendation      71 

 

REFERENCE         72 

APPENDICES A-B         82 

 



xi 

 

LIST OF TABLES 

 

 

 

 

TABLE NO   TITLE          PAGE 

 

 

3.1 Series of Eu3+ doped ceramics with composition xSrO-40B2O3- 

(60-x)P2O5 doped with Eu3+       21 

 

3.2 Series of Dy3+ doped ceramics with composition xSrO-40B2O3- 

(60-x)P2O5 doped with Dy3+       21 

 

3.3 Ceramics with composition 10SrO-40B2O3-50P2O5: 

 xaEu3+, yaDy3+        21 

 

3.4 Ceramics with composition 20SrO-40B2O3-40P2O5: 

 xbEu3+, ybDy3+        22 

 

4.1 Lattice parameter of Eu3+ doped series of ceramic    28 

 

4.2 IR spectra and assignments of xSrO-40B2O3-(60-x)P2O5: Eu3+  40 

 

4.3 IR spectra and assignments of xSrO-40B2O3-(60-x)P2O5: Dy3+   43 

 

4.4 IR spectra and assignments of 10SrO-40B2O3-50P2O5: 

 xaEu3+, yaDy3+ ceramics       45 

 

4.5 IR spectra and assignments of 20SrO-40B2O3-40P2O5: 

 xbEu3+, ybDy3+ ceramics       45 

 



xii 

 

4.6 Electronics transition of Eu3+ doped xSrO-40B2O3-(60-x)P2O5  

ceramics         50 

 

4.7 Ionic radii difference percentage between host cations and doped 

 ion           52 

 

4.8 Electronic transition of Dy3+ doped xSrO-40B2O3-(60-x)P2O5  

ceramics         56 

 

4.9 Calculated ionic radii difference percentage of Dy3+ doped  

 strontium borophosphate ceramics      57 

 

4.10 Density and volume of codoped series sample    65 

 

4.11 Calculation of distance between dopants     66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

 

LIST OF FIGURES 

 

 

 

 

FIGURE NO   TITLE          PAGE 

 

 

2.1 (i) Common resonant energy transfer mode, (ii) Cross relaxation  18 

 

3.1 Sample preparation        20 

 

3.2 Bragg’s law         23 

 

3.3 FT-IR principal         24 

 

3.4 Photoluminescence spectroscopy instrumentation diagram   25 

 

4.1 Eu3+ doped strontium borophosphate ceramics    27 

 

4.2 XRD spectra of xSrO-40B2O3-(60-x)P2O5: Eu3+ ceramics   29 

 

4.3 XRD spectra of xSrO-40B2O3-(60-x)P2O5: Dy3+ ceramics   31 

 

4.4 XRD spectra of 10SrO-40B2O3-50P2O5:xaEu3+,yaDy3+  

 ceramics         33 

 

4.5 XRD spectra of 20SrO-40B2O3-40P2O5:xbEu3+,ybDy3+  

 ceramics         34 

4.6 XRD spectra of undoped and single dopant doping ceramics with  

composition 10SrO-40B2O3-50P2O5      35 

 

4.7 IR spectra of xSrO-40B2O3-(60-x)P2O5:Eu3+ ceramics   39 



xiv 

 

 

4.8 IR spectra of xSrO-40B2O3-(60-x)P2O5:Dy3+ ceramics   42 

 

4.9 IR spectra of 10SrO-40B2O3-50P2O5:xaEu3+, yaDy3+ and  

 20SrO-40B2O3-40P2O5:xbEu3+, ybDy3+ ceramics    44 

 

4.10 IR spectra of single doping and undoped sample with  

composition 10SrO-40B2O3-50P2O5     47 

 

4.11 Excitation spectra of Eu3+ doped xSrO-40B2O3-(60-x)P2O5  

ceramics          48 

 

4.12 Emission spectra of xSrO-40B2O3-(60-x)P2O5 ceramics   50 

 

4.13 Schematic energy level diagram of Eu3+     53 

 

4.14 Excitation spectra of Dy3+ doped xSrO-40B2O3-(60-x)P2O5  

 ceramics          54 

 

4.15 Emission spectra of Dy3+ doped xSrO-40B2O3-(60-x)P2O5  

 ceramics          55 

 

4.16 Energy level diagram of Dy3+      58 

 

4.17 Excitation spectra of 10SrO-40B2O3-50P2O5:xaEu3+, yaDy3+  

 ceramics         60 

 

4.18 Emission spectra of 10SrO-40B2O3-50P2O5:xaEu3+, yaDy3+  

 ceramics         61 

 

4.19 Excitation spectra of 20SrO-40B2O3-40P2O5:xbEu3+, ybDy3+  

 ceramics         62 

4.20 Emission spectra of 20SrO-40B2O3-40P2O5:xbEu3+, ybDy3+  

ceramics          63 



xv 

 

 

4.21 Comparison between PL intensity of undoped and codoped  

 samples         64 

 

4.22  Overlapping of Eu3+ excitation and Dy3+ emission spectra for  

  10SrO-40B2O3-50P2O5:xaEu3+, yaDy3+ series    67 

 

4.23 Energy transfer diagram of Eu3+-Dy3+ pairs     68 

 

4.24 Overlapping of Eu3+ excitation and Dy3+ emission spectra for 

 20SrO-40B2O3-40P2O5:xbEu3+, ybDy3+     69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvi 

 

 

LIST OF SYMBOLS 

 

 

 

 

∆ - Delta 

ρexp - experimental sample density 

Wa - weight of sample in air 

Wl - weight of sample in liquid 

ρl - air density  

ρa - liquid density  

oC - Degree celsius 

Mol% - Molecular percentage 

sin - Sine 

θ - Theta/degree 

λ - Wavelength (Lambda) 

Å - Armstrong 

Dr - Radius difference percentage 

CN - Coordination number for atom and ion 

Rm - Radius of host cation  

Rd - Radius of doped ion 

V - Volume 

π - Pine 

C - Concentration 

R - Distance 

 

 

 

 

 

 

 

 

 

 



xvii 

 

 

LIST OF ABBREVIATIONS 

 

 

 

 

BC - Before century 

XRD - X-ray diffraction 

UV - Ultraviolet 

FT-IR - Fourier transform infrared spectroscopy 

PL - Photoluminescence 

LED - Light emitting diode 

PDP - Plasma display panel 

1-D - One dimension 

2-D - Two dimension 

3-D - Three dimension 

NBO - Non bridging oxygen 

Ln - Lanthanide 

nm - Nanometer 

ml - Milliliter 

cm - Centimeter 

kN - Kilo newton 

mA - Mili ampere 

CCD - Charge couple device 

JCPDS - Joint Committee on Powder Diffraction Standard 

 

 

 

 



xviii 

 

 

LIST OF APPENDICES 

 

 

 

 
Appendix A -  Calculation of density 

 

Appendix B -  Publication 



CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.0 Introduction  

 

 

The borophosphate has been investigated in recent decade. Several of studies 

on certain element have been carried out such as luminescence, structural, physical, 

and many else. Though, the research still need to be carried out for exploring the 

undiscovered fact of borophosphate. To study in details, several instrument were 

applied for obtaining data and results. Analysis in particulars to complete the 

research. 

 

 

 

 

1.1 Background of Study 

 

 

Ceramic is one of the early industries on this planet. The Archeologists have 

exposed human-made ceramics that belong to at least 24,000 BC. The word 

"ceramic" originates from the Greek word, which means “for pottery”. Ceramics are 

highly crystalline with some glassy phase. They are basically formed by compaction 

of powders and fusion at high temperature ranging below melting point and then 

subsequently cool down to room temperature (Wagh et al., 2004). Ceramics are 

mostly produced by using sintering, a process to transform the porous powder 

compact into a dense ceramic body (Tong et al., 1996). However, complexity of 

sintering process of ceramic will cause phosphor ceramic facing difficulty in 

obtaining the desire shape (Fu et al., 2001).  
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There have several categories of ceramics, which are structural, refractories, 

whitewares, and technical ceramic. Scientists nowadays are focusing their scope in 

developing ceramics that can be used in advanced material field or technical 

categories ceramics such as biomedical implants, phosphor, and so on. Ceramics 

always contain some amount of initial components or other solid phases (Maltsev et 

al., 2004). They were possessing improved mechanical properties, offer wide range 

of compositions, lower cost of fabrication, less wasted material, and near net shape 

forming methods as compared to single crystal oxides (Seeley et al., 2012). 

 

 

Borate, B2O3, is well known functions as good glass network former 

(Thulasiramudu et al., 2006). Boron can form a large variety of compounds because 

of the complexity of the structures involved. Borate has low melting point and high 

thermal stability, good optical material, high luminescence that it is usually used for 

the formation of dielectric, plasma display panel, and cathode ray tube (Kumar 

Mithlesh et al., 2011; Sumalatha et al., 2011). By Raman spectroscopy the borate 

glass was found containing different dominant structural units such as boroxol rings, 

pentaborate, diborate and metaborate (Souza Filho et al., 2000).  

 

 

Phosphate, another popular host material, it is inorganic material and in their 

crystalline form. Phosphate is important in optical technology and industry due to 

their functions as application such as lamp industry, colour display and X-ray 

imaging. Phosphate is useful in many industries because of their luminescent, 

dielectric, semiconductive, catalyst, fluorescent, ion exchange properties, high 

absorption in VUV-UV region, moderate phonon energy, and large band gap (Lin et 

al., 2014; Makram Megdiche et al., 2014). Phosphate could be exists in crystal, glass 

or ceramic form. Phosphate ceramics are always used in biomedical and dentistry 

field due to bioactivity and non-toxicity (Omer Kaygili et al., 2013). However, 

practical application of phosphate is limited by reason of poor chemical durability 

(Karabulut et al., 2001). With the addition of other oxides, the chemical stability of 

the phosphate glasses could be greatly improved, because the added cations connect 

the layers or interlink the chains in the phosphate network system, leading to the 

formation of three-dimensional network system (Yang et al., 2012).  
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Borophosphates, containing BO3, BO4, and PO4 groups as basic structural 

units, have drawn attention since several decades due to their wide use as phosphors, 

lasers and non-linear optical materials (Duan et al., 2006; Zhang et al., 2010b). 

Addition of small amount of B2O3 into phosphate network leads to the formation of 

BO4 groups that cross-link neighbouring phosphate chains, which significantly 

improve the chemical durability of phosphate. Therefore, borophosphate possess 

higher chemical stability, chemical durability and thermal stability compared with 

pure borate and pure phosphate (Hiromichi Takebe et al., 2006; Koudelka et al., 

2003; Leong et al., 2013; Leong et al., 2014; Ren et al., 2013).  

 

 

Alkaline earth was commonly applied as modifier due to these oxides are able 

to shift up the boroxyl rings and the active group in the mixture to form tri- and tetra-

bond on the host (Yasser Saleh Mustafa Alajerami et al., 2012). Strontium 

borophosphate owning strontium oxide Sr2+ cations, act as network modifiers, in the 

structure network for breaking bridging oxygen bond to form non-bridging oxygen 

(NBO) bond (Sumalatha et al., 2011). Strontium borophosphate having a crystallite 

form, SrBPO5, corresponding to mineral stillwellite has been investigated in detail in 

recent years (Lu et al., 2005). SrBPO5 contain central three single chains of BO4 

tetrahedron and linked to terminal PO4 tetrahedron to form the system network 

(Liang et al., 2002). Another crystallite form of strontium borophosphate is 

Sr6BP5O20 as boron added into Sr2P2O7 with the composition of 2SrO, 0.84P2O5, and 

106B2O3 (Katsuo Murakami et al., 1979). Strontium borophosphate related phosphor 

can be commonly used for mercury free lamp, plasma display panel (PDP), and 

tricolor lamp (Lu et al., 2005; Qin et al., 2010). 

 

 

Phosphors are the luminescent material, which is referring to a substance that 

shows the luminescence phenomenon. Most of the phosphors are inorganic materials 

consists of a host lattice with purposely doped with transition metal or rare earth. In 

another words, phosphor is a substance that irradiates light by absorbing light from 

the sunlight and artificial light and then exhibit photoluminescence emission 

(Murazaki et al., 2003; Ronda et al., 2007). Photoluminescence is the spontaneous 

emission of light from a substance under optical excitation. In recent years, 
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phosphors containing rare-earth ions have received increasing attention due to their 

technological importance (Huang et al., 2008). 

 

 

Rare earth doped alkaline earth borophosphate lattices has been studied 

extensively because it has high luminescence, moderate synthetically temperature, 

and low thermal degradation (Wang et al., 2008). Eu3+ ion is a suitable activator for 

developing desired red emission phosphor and widely used in many applications 

(Han et al., 2013). Meanwhile, Eu3+ is also sensitive to the local structure which 

means that activator ions would have covalent interaction with surroundings anions 

(Bhaskar Kumar et al., 2009; Huang et al., 2013; Zambelli et al., 2004). Dy3+, 

another rare earth, has normally been used as high efficiency activator and it has two 

intense bands in the visible emission spectrum, yellow band (574 nm) and blue (480 

nm) band (Jayasankar et al., 2004; Kiran et al., 2013; Nagpure et al., 2009). 

Luminescence spectrum of Dy3+ ion was slightly influenced by the surrounding 

ligands of the host material, because electronic transitions of Dy3+ involve only 

redistribution of electrons within the inner 4f sub-shell (Kartik et al., 2012). The 

luminescent materials doped with Dy3+ ion are commonly used for generation of 

white light in glass and this white colour emission luminescence glass has several 

advantages such as homogenous light emission, lower production cost, long lifetime, 

lower energy consumption and many more (Kiran et al., 2013). 

  

 

Zhang et al have successfully to synthesized the Eu2+ and Ce3+ codoped 

strontium borate glasses that showing strong fluorescent emission at 350 nm (Zhang 

et al., 2006). Yasser et al 2012 was reporting in detail about the Dy3+ and Sm3+ 

doped lithium magnesium borate glasses and the emission spectra showing strong 

emission at 588 nm and 600 nm respectively. Polycrystalline SrB4O7:Eu2+ has been 

prepared in the air or even in pure oxygen atmosphere, Eu2+ remains to be the 

dominating ion (Pei et al., 2000). Aleksandrovsky et al found that the nearest 

environment of Eu3+ ions in strontium tetraborate glass differs from that in strontium 

borate polycrystal (Aleksandrovsky et al., 2005). Liang et al are claimed that Tb3+, 

Mn2+ codoped zinc strontium phosphate having energy transfer from Tb3+ to Mn2+ 

which has proven by increasing the MnO content and mean duration time of Mn2+ 

was decreased (Liang et al., 2011). In the photoluminescence studies of 
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M5(PO4)3F(M=Ca, Sr, Ba):Dy3+ and Eu2+ phosphors, photoluminescence spectrum 

was revealed that the Dy3+ gives blue, yellow, and red emission at 348 nm excitation 

and it is predominant at 4F9/2→
6H15/2 transition (Nagpure et al., 2009). Qin et al 

found that Sm2+ ions are relatively large for ninefold-coordinated site in Sm2+ doped 

Sr6BP5O20 (Qin et al., 2010). Luminescence properties of Ce3+ doped MBPO5 (M= 

Sr, Ba) were studied by Berezovskaya et al. It was found that the total crystal field 

splitting of Ce3+ 5d configurations are preferable to occupy the ninefold-coordinated 

in MBPO5 (M=Sr, Ba), nevertheless the lowest 5d state of Ce3+ is at high energy due 

to the high degree of ionicity of the M-O bond (Berezovskaya et al., 2005). Kumar et 

al measured the life time decay of Eu3+ doped SrBPO5 and this decay spectra showed 

that Eu3+ ions are present at two different sites and mainly occupy Sr2+ sites (Kumar 

Mithlesh et al., 2013).  

 

 

 

 

1.2 Statement of Problem 

 

 

Borate and phosphate ceramics were commonly used in bioceramic or 

enameling. Despite of that, borophosphate was mostly acted as host in glass network 

instead of ceramic and investigations on borophosphate viterous system were almost 

saturated. A study on polycrystalline borophosphate or borophosphate ceramics is 

highly necessary for the understanding and obtaining knowledge in ceramics.  

 

 

Besides that, phosphate network is very hygroscopic and chemically unstable, 

in general, which limits their usefulness. Since phosphate network existed in 

borophopshate network, chemical durability of borophosphate is still unsatisfied 

unless an optimize composition was determined. The chemical bondings and 

functional groups exist in host matrix are important to get the whole picture of 

structural network and also the local symmetry or coordination in borophosphate 

system. However, structural characteristics of borophosphate ceramics have not been 

detail investigated in recent years. 
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In last decades, many studies on luminescence of borophosphate phosphor 

were carried out but those studies were mainly focused on phosphor doped with Eu2+, 

Sm2+, and Ce3+ ions. Luminescence studies would be helpful in comprehends 

photoluminescence mechanism of activators and the energy transfer band for 

codoping situation. As far as concerned, study on luminescence properties of Eu3+ 

and Dy3+ codoped borophosphate ceramic that possessing polycrystalline structure 

has not much been carried out.  

 

 

The relationship between the crystal structural system and PL emission had 

been reported by several researchers. However, the polycrystalline is differs from 

single crystal and symmetrical of this type of solid state form does vary with certain 

compositions. The influences of polycrystalline structural system to the 

photoluminescence (PL) mechanism of strontium borophosphate ceramic are still 

remains to be poorly known and a detailed analysis about this impact has not been 

established. Moreover, doubtfulness of addition of activators concentration into host 

network has modified structure network should be clarified in this study. There are 

very limited reports on Eu3+ and Dy3+ codoped ceramics. A detailed study on Eu3+ 

and Dy3+ codoped borophosphate ceramics will be carried out yet the results will be 

presented and analysed in details. 

 

 

 

 

1.3 Objectives of Study 

 

 

The objectives of this study are: 

 

 

i) To synthesize and determine crystalline phase of Eu3+ and Dy3+ codoped 

strontium borophosphate ceramics  

ii) To determine vibrational bonding and functional groups of Eu3+ and Dy3+ 

codoped strontium borophosphate ceramics  

iii) To determine the strongest photoluminescence intensity and 

photoluminescence mechanism of Eu3+ and Dy3+ codoped strontium 

borophosphate ceramics  
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1.4 Scope of Study 

 

 

The ceramics sample were synthesize using sintering method and its solid 

state phase would be determined. XRD is employed to recognize the crystalline 

phase solid state sample such as amorphous, polycrystalline and crystalline structure. 

Besides that, identification of crystalline phase could be used to deduce the 

surroundings environment of activator in the sample therefore determine the 

optimized composition of ceramics which would give the best enhancement to 

photoluminescence emission.  

 

 

FT-IR study is used to determine the chemical bonding and vibration bands. 

FT-IR measurement can detect both phosphate and borate structural bonding 

efficiently. However, overlapping of borate and phosphate bonding occurred in FT-

IR measurement causes difficulties in identifying actual vibrational bonding position. 

Thus, FT-IR study combine with XRD spectra to determine the actual bonding exist 

in host lattice due to XRD are complimentary technique in studying structural 

properties.  

 

 

Photoluminescence (PL) spectroscopy is essential instruments used to 

measure the fluorescent emission of the sample under certain excitation energy 

provided. In addition, PL excitation spectra could be combined with PL emission 

spectra to reveal the PL mechanism based on the energy transfer and defect condition 

in host lattice.  

 

 

 

 

1.5 Significant of Study 

 

 

This study has developed a novelty Eu3+ and Dy3+ codoped borophosphate 

ceramics. Ceramics own polycrystalline structure that having better chemical 

durability and stability compared with amorphous glasses. Instead of glasses, 

ceramic production cost is lower because it using lower temperature than host 
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compound melting point. An optimum composition was determined to achieve the 

finest and strongest emission.  

 

 

Variation of structural system leads to the predominant fluorescent emission 

shifted. Influences of structural system to the luminescence properties were clarified 

clearly and this influences or modifications can be taken in consideration on 

developing luminescent material for industrial uses. The developed ceramic can be 

utilized as solid state lighting such as light emitting diodes (LED), tri-colour 

fluorescent lamp, plasma display panels (PDP), and field emission displays.  
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