PRODUCTION OF SELENIUM ENRICHED Saccharomyces boulardii IN PILOT SCALE BIOREACTOR

AMIR FUHAIRA BIN HJ. ISHAK

UNIVERSITI TEKNOLOGI MALAYSIA

ACKNOWLEDGEMENT

During my time doing this research I have met with countless of peoples, friends and acquaintances who have contributed greatly to my research. First of all I would like to express my deepest gratitude and appreciation to my supervisor and co-supervisor, Professor. Ramlan B. Abd Aziz and Professor Dr. Hesham Ali El-Enshasy for all his guidance, thoughts, advice, critics and advice throughout my research. I am also very thankful to our research officer; Madam Zalina, Madam Roslinda and Mr Solleh for all their guidance, assistance and support, without them, my research vision would be obscure.

I also wanted to use this opportunity to express my thankful to all my fellow postgraduate friends and lab mates especially Danial, Helmi, Khairuddin, Azuan, Subeesh, Soltani, Ali, Hafizah, Hamizah, Khai, Naqi, Yahya and all the other names that I could not write it here. This feeling also goes to all the peoples who had helped me direct or indirectly throughout my years here. Without all of them I could never achieved until this point. For all this years I faced so many experiences which challenged me physically, emotionally, mentally and financially to the edge. To my surprise all of this has helped me to be a better person. Lastly I would like to express my gratitude towards my family especially to my lovely father for his understanding, kindness and unconditional love towards me.

ABSTRACT

Selenium (Se) yeast has been widely used as a Se supplementation for humans. Supplementation with Se-enriched yeast in animal and human diet has been proven to have beneficial health effects. One major disadvantage in Se yeast production is the complexity in the yeast production. The objective of this study is to optimize cell mass production of Saccharomyces boulardii for Selenium enrichment process. Production of S. boulardii cell mass was optimized by using both classical and statistical approach. Production of high cell mass of S. boulardii was upscaled using a 16-L stirred tanked bioreactor in batch and fed-batch cultivation strategies where the fed batch bioreactor cultivation with complete medium showed the highest cell mass production at 34.16 g L⁻ ¹. During Se enrichment process, effects of different Se concentration and addition time were examined to maximize the Se absorption process by S. boulardii. The production of Se yeast was further upscaled in a 16-L stirred tank bioreactor in batch and fed batch cultivation strategies. In Se enrichment process 90 mg mL⁻¹ Se which added at 16 hour of cultivation time for 24 hour was found to be best condition for Se enrichment in S. boulardii. The process was used in fed-batch cultivation in 16-L stirred tank bioreactor with full medium. Maximum cell biomass was at 24.97 g L^{-1} with 0.177 h⁻¹ specific growth rate. The highest Se content was achieved at 41.65 μ g g⁻¹ with 1.78 μ g g⁻¹ h⁻¹ absorption rate. Therefore it can concluded that addition of Se in late exponential phase of S. boulardii growth is the most suitable condition to minimize the inhibition effect on S. boulardii cell mass production and at the same time maximize the absorption of Se process.

ABSTRAK

Selenium yis telah digunakan secara meluas sebagai sumber tambahan Se kepada manusia. Yis yang diperkaya dengan Se terbukti dapat meningkatkan kesihatan apabila diambil dengan berkala. Masalah utama yang dihadapi dalam penghasilan yis diperkaya dengan Se adalah kerumitan dalam penghasilan yis yang mampu bertahan dengan kesankesan sampingan akibat penggunaan Se. Matlamat kajian ini adalah untuk mengoptimumkan penghasilan sel S. boulardii untuk penghasilan yis yang diperkaya dengan Se. Penghasilan sel S. boulardii dioptimumkan menggunakan pendekatan klasikal dan statistikal. Media yang telah dioptimumkan digunakan untuk penghasilan sel S. boulardii di dalam skala yang lebih besar iaitu 16 liter bioreaktor dengan kaedah kelompok dan suapan kelompok. Penghasilan sel S. boulardii yang tertinggi pada 34.16 g L^{-1} berjaya di capai melalui kaedah suapan kelompok dengan menggunakan suapan media lengkap. Yis yang diperkaya dengan Se di uji dengan pelbagai kepekatan dan masa tambahan Se untuk mengoptimumkan penyerapan Se oleh sel. S. boulardii diperkaya dengan Se di hasilkan dalam skala besar 16 liter bioreaktor dengan kaedah kelompok dan suapan kelompok. Jumlah kandungan Se menunjukan 90 mg mL⁻¹ dengan waktu penambahan Se selepas 16 jam dan rawatan selama 24 jam adalah kaedah yang paling sesuai untuk pengasilan S. boulardii diperkaya dengan Se. Jumlah kandungan Se tertinggi di hasilkan melalui kaedah suapan kelompok di dalam 16-L bioreactor dengan jumlah kandungan Se adalah sebanyak 41.65 µg g⁻¹dengan kadar penyerapan Se pada 1.78 μ g g⁻¹ J⁻¹. Melalui hasil penyelidikan ini, tambahan Se pada hujung fasa eksponen S. boulardii dapat mengurangkan kesan yang merencatkan pertumbuhan S. boulardii dan pada masa yang sama memaksimumkan daya penyerapan Se.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	ACKNOWLEDGEMENT	iii
	ABSTRACT	iv
	ABSTRAK	V
	TABLE OF CONTENTS	vi
	LIST OF TABLES	xii
	LIST OF FIGURES	xvi
	LIST OF ABBREVIATIONS	XX
	LIST OF APPENDICES	xxiii

INTR	ODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	4
1.3	Research Objectives	5
1.4	Research Scopes	5

LITE	ERATU	RE REVIEW	7
2.1	Introd	luction	7
2.2	Sacch	aromyces boulardii	8
	2.2.1	Advantages of probiotic from S. boulardii	8
	2.2.2	Properties of probiotic yeast, S. boulardii	10
	2.2.3	Cultivation Condition of S. boulardii	11
		2.2.3.1 Effect of Carbon Sources	12
		2.2.3.2 Effect of Nitrogen Sources	13
		2.2.3.3 Effect of Phosphate Sources	15
		2.2.3.4 Effect of Other Inorganic Elements	15
	2.2.4	Optimization of Culture Condition	16
		2.2.4.1 High Biomass Culture of S. boulardii	
		Cultivation	16
	2.2.5	Fermentation Mode	18
		2.2.5.1 Batch Cultivation	18
2.3	Seleni	ium Enrich Yeast	21
	2.3.1	Selenium Species and their chemical	
		properties	22
	2.3.2	Bioavailability of Se and Its Role	24
	2.3.3	Selenium Deficiency and Health	24
	2.3.4	Sodium selenite	25
	2.3.5	Selenium enriched Yeast	26
	2.3.6	Production of Se yeast	27
	2.3.7	Effect of Sodium selenite addition on Yeast	28
2.4	Influe	ntial Factors of Metal Accumulation	29
	2.4.1	рН	29
	2.4.2	Temperature	29
	2.4.3	Initial Concentration of Metal Ions	
		and Yeast Biomass	30
	2.4.4	Cell Age	31

ΜΕΤΗΟΡΟΙ ΟΩΥ

мет	HODO	LOGY	32	
3.1	Introd	uction	32	
3.2	Overv	Overview of the Research Methodology		
3.3	Sacch	aromyces boulardii Strain	35	
3.4	Prepa	ration of Working Cell Culture	35	
3.5	Studie	es on Shake Flask Cultivation	36	
	3.5.1	Shake Flask Media Screening	36	
	3.5.2	Shake Flask Media Growth Study	38	
	3.5.3	Carbon Sources Screening	39	
	3.5.4	Nitrogen Sources Screening	39	
	3.5.5	Different glucose concentration	40	
	3.5.6	Different Meat Extract concentration	41	
	3.5.7	Carbon to Nitrogen ratio	42	
	3.5.8	Media optimization in Factorial Design	43	
	3.5.9	Media Optimization using RSM	44	
		3.5.10 Growth Kinetic comparison between		
		Optimized and un-optimized media	46	
3.6	Study	on Bioreactor cultivation	47	
	3.6.1	16-L Stirred Tank Batch Bioreactor Cultivation	47	
	3.6.2	16-L Stirred Tank Fed-Batch Bioreactor		
		Cultivation	48	
3.7	Cultiv	ation of S. boulardii with Sodium selenite	48	
	3.7.1	Different Concentration of Sodium Selenite		
		in S. boulardii	49	
	3.7.2	Different Addition Time and Treatment		
		hour of Sodium selenite	49	
	3.7.3	Study of Se Absorption Kinetic in		
		S. boulardii Growth Curve	50	
	3.7.4	Study of Se Absorption Kinetic in post		
		harvest Cultivation of S. boulardii	50	

	3.7.5	16-L Stirred Tank Bioreactor Batch	
		Cultivation for Se Enriched S. boulardii	
		production	51
	3.7.6	Fed-Batch cultivation of 16-L Stirred Tank	
		for Se enriched S. boulardii production	52
3.8	Analy	vsis	53
	3.8.1	Cell Mass Determination	53
	3.8.2	Glucose Determination	53
		3.8.2.1 Dinitrosalicylic colometric (DNS)	53
		Preparation	
	3.8.3	Selenium Analysis	54
RES	ULTS A	ND DISCUSSION	55
4.1	Introd	luction	55
4.2	Mediu	um Optimization Study for High Cell	
	Bioma	ass Production of S. boulardii	56
	4.2.1	Screening of Different Media	
		Cultivation	56
	4.2.2	Effect of Different Carbon Sources on	
		Cell Growth	58
	4.2.3	Effect of Difference Nitrogen Sources on	
		Cell Growth	60
	4.2.4	Effect of Difference Inorganic Nitrogen	
		Sources on Cell Growth	62
	4.2.5	Effect of Difference Glucose concentration	
		on Cell Growth	64
	4.2.6	Effect of Difference Meat Extract	
		Concentrations on Cell Growth	66
	4.2.7	Effect of Carbon to Nitrogen Ratio on Cell	
		Growth	68

		4.2.8	Statistical Media Optimization	70
			4.2.8.1 Factorial Design	70
			4.2.8.2 Box-Behnken Design for Medium	
			Optimization Study	73
		4.2.9	Growth Kinetic Comparison	82
		4.2.10	Batch Cultivation in 16-L Stirred	
			Tank Bioreactor	85
		4.2.11	Fed-Batch Cultivation in 16-L Stirred	
			Tank Bioreactor	88
			4.2.11.1 Full Medium and Glucose with	
			Constant Feeding in uncontrolled pH	88
	4.3	Seleni	um enrichment of S. boulardii	93
		4.3.1	Study of Different Se concentration in	
			S. boulardii enrichment	93
		4.3.2	Study of Different Se Addition Time and	
			Treatment Hour for Se Yeast Enrichment	95
		4.3.3	Selenium Absorption Kinetic	97
		4.3.4	Study of Se enrichment in Post Harvest	
			Cultivation of S. boulardii	98
		4.3.5	Batch cultivation of Se enriched S. boulardii	
			in 16-L Stirred Tank Bioreactor	100
		4.3.6	Fed-Batch Cultivation of Se Enriched	
			S. boulardii in 16-L Stirred Tank Bioreactor	102
5	CON	CLUSI	ON	105
	5.1	Concl	usion	105
	5.2	Recor	nmendation	107
REFERE	INCES			109
APPEND	OICES A-	R		119-135

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Maximal cell mass using different media in	
	both shake flask and bioreactor	17
3.1	Cultivation media for biomass production	37
3.2	Media Composition of Different Carbon	
	Sources	39
3.3	Media Composition of Different Nitrogen	
	Sources	40
3.4	Media Composition of Different Glucose	
	Concentration	40
3.5	Media Composition of Different	
	Meat Extract Concentration	41
3.6	Carbon to Nitrogen Ratio	42
3.7	Different range and levels of factors	
	influencing S. boulardii cell growth	43

3.8	Media composition for medium optimization	45
3.9	Media composition of 16L bioreactor Cultivation	47
3.10	Composition of starting and feeding medium for Fed-batch cultivation of <i>S. boulardii</i> in 16-L stirred tank bioreactor	48
3.11	Media components of Se enriched <i>S. boulardii</i> bioreactor cultivation	51
3.12	Composition of starting and feeding media in fed batch cultivation of Se enriched <i>S. boulardii</i> in 16-L stir tanked bioreactor	52
4.1	Experimental range and level of factors influencing <i>S. boulardii</i> cell growth in two-level full factorial design	70
4.2	Five factors, two-level full factorial design for experiment	71
4.3	Analysis of Variance (ANOVA) for Cell Mass Production of <i>S. boulardii</i> by using five factors with two-level factorial designs	73
4.4	Experimental range and levels of factors influencing <i>S. boulardii</i> cell growth in A Box-Behnken design	74
4.5	Box Behnken design of experiments.	74

4.6	Estimation of Regression Coefficient of cell mass	
	production of S. boulardii using Box-Behnken Design.	79
4.7	Analysis of Variance for cell mass	80
4.8	Estimated Regression Coefficient for cell mass of	
	S. Boulardii using data in un-coded unit	81
4.9	Comparison growth kinetic for un-optimized and	
	optimized shakes flask and batch for controlled and	
	uncontrolled pH	82
4.10	Parameters used in fed-batch cultivation of	
	S. boulardii in controlled pH	88
4.11	Composition of full medium for feeding substrate	88
4.12	Growth kinetic for Fed-Batch culture with different	
	feeding medium	89
4.13	Kinetic growth for Se absorption in batch and	
	Fed-batch bioreactor	91
4.14	Kinetic growth for Se absorption in batch and	
	Fed-batch bioreactor	104

LIST OF FIGURE

FIGURE NO	D. TITLE	PAGE
2.1	Equation based on the stoichiometry for growth and product formation	12
2.2	Typical growth curve of a bacterial population in batch cultivation system	18
2.3	Equation for Specific Growth Rate	19
2.4	Equation for Doubling time	19
2.5	Equation for Specific Growth Rate and Residue growth limiting Substrate	20
2.6	Equation of Yield Coefficient	21
3.1	Overview of Methodology	34
4.1	Cell dry weight of <i>S. boulardii</i> , final pH and ethanol [%] in seven different media	59

4.2	Cell dry weight and final pH in shake flask culture of	
	S. boulardii with different carbon sources	60
4.3	Cell dry weight and final pH in shake flask culture of	
	S. boulardii with different nitrogen sources	62
4.4	Cell dry weight and final pH in shake flask culture of	
	S. boulardii with different inorganic nitrogen sources	64
4.5	Cell dry weight and final pH in shake flask culture of	
	S. boulardii with different glucose concentration	66
4.6	Cell dry weight and final pH in shake flask culture of	
	S. boulardii with different meat extract concentration	68
4.7	Cell Dry Weight of S. boulardii in Different Carbon to	
	Nitrogen Ratio	69
4.8	Pareto Chart of the Standardized Effects which Identify	
	The Medium Components Influenced the Response.	72
4.9	Effect of interaction factors for NaNO ₃ and glucose	
	In medium composition for cell biomass production of	
	S. boulardii	76
4.10	Effect of interaction factors for meat extract and glucose	
	in medium composition for cell biomass production of	
	S. boulardii	77
	5. 001111111	, ,

4.11	Effect of Interaction Factors for NaNO3 and meat extract	
	in medium composition for cell biomass production of	
	S. boulardii	78
4.12	Growth curve kinetic of un-optimized media in shake flask	
	cultivation of <i>S. boulardii</i>	84
4.13	Growth curve kinetic of optimized media in shake flask	
	cultivation	84
4.14	Cell dry weight production, glucose residual, and dissolv	e
	oxygen changes in batch bioreactor 16-l cultivation with	~ -
	controlled pH	87
4.15	Cell dry weight production, glucose residual, and dissolve	
	oxygen changes in batch bioreactor 16-l cultivation with	07
	un-controlled pH	87
4.16	Cell dry weight, glucose residual, pH,and dissolve oxygen	
	changes in fed-batch cultivation of <i>S. boulardii</i> in comple media feeding	ete 90
		70
4.17	Cell dry weight, glucose residual, pH, and dissolve oxygen	
	changes in fed batch cultivation of <i>S. boulardii</i> in single glucose feeding	90
4.18	Cell dry weight production and Se content in different Se	04
	concentration	94
4.19	Cell dry weight and Se content in different Se addition	_
	time.	96

4.20	Growth curve of Se accumulation during cell growth	
	kinetic	99
4.21	Cell dry weight and Se content in post harvest of Se	
	treatment	101
4.22	Batch cultivation of Se enriched S. boulardii in 16-L	
	Stirred tank bioreactor	102
4.23	Fed-Batch cultivation of Se enriched S. boulardii in 16-L	
	Stirred tank bioreactor	104

LIST OF ABBREVIATIONS

AAD	-	Antibiotic Associated Diarrhea
ATCC-MYA	-	American Type Culture Collection, Manassaas
CD	-	Crohn's Disease
CDW	-	Cell dry weight
CO_2	-	Carbon dioxide
DO	-	Dissolved Oxygen
FAO	-	Food and Agriculture Organization
GI	-	Gastrointestinal
OD	-	Optical density
OD540	-	Optical density at 540 nm
OD600	-	Optical density at 600 nm
рН	-	potential of hydrogen
RSM	-	Response Surface Methodology
SCF	-	The Scientific Committee for Food
sp.	-	Species
<i>S</i> .	-	Saccharomyces
UV	-	Ulcerative colitis
ICP-MS	-	Inductively coupled plasma mass spectrometry

LIST OF CHEMICALS

С	-	Carbon
CaCl ₂ . 2H ₂ O	-	Calcium chloride dehydrate
CoCl ₂ .6H ₂ O	-	Cobalt Chloride, hexahydrate
CuSO ₄ . 5H ₂ O	-	Copper (II) sulfate pentahydrate
DNS	-	3, 5-dinitro-salicylic acid
FeCl ₃ .6H ₂ O	-	Iron (III) Chloride, hexahydrate
FeSO _{4.} 7H ₂ O	-	Iron (II) sulfate heptahydrate
H_2O	-	Water
H_2PO_4	-	Hydrogen phosphate
H ₃ PO ₃	-	Phosphorous Acid
HCl	-	Hydrochloric acid
HNO ₃	-	Nitric Acid
K ₂ HPO ₄	-	Dipotassium phosphate
KH ₂ PO ₄	-	Monopotassium phosphate
MgCl ₂ . 6H ₂ O	-	Magnesium sulfate hexahydrate
MgSO ₄	-	Magnesium sulfat
MgS0 ₄ .7H ₂ O	-	Magnesium sulfate heptahydrate
MnSO ₄ 2H ₂ O	-	Manganese Sulfate
Na ₂ SO4	-	Sodium sulfate
NaCl	-	Sodium Chloride
NaNO ₃	-	Sodium Nitrate
NaOH	-	Sodium hydroxide
NH ₄ CI	-	Ammonium chloride

$(NH_4)_2SO_4$	-	Ammonium sulfate
Se	-	Selenium
YPD	-	Yeast Peptose Dextrose
ZnSO ₄ . 7H ₂ O	-	Zinc sulfate heptahydrate

LIST OF SYMBOLS

°C	-	Degree Celsius
μ	-	Specific growth rate [h ⁻¹]
t_d	-	Doubling time [h ⁻¹]
%	-	Percentage
F	-	Feed Rate [g $L^{-1} h^{-1}$]
v/v	-	Volume per volume
vvm	-	Volume per volume per minute
Х	-	Biomass concentration [g L ⁻¹]
Н	-	Hour
Nm	-	Nanometer

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Medium composition for screening	122
В	Media Screening	125
С	Carbon Source Screening	126
D	Nitrogen Source Screening	126
E	Inorganic Nitrogen Source Screening	127
F	Glucose Concentration Optimization	127
G	Meat Extract Concentration optimization	128
Н	Carbon to Nitrogen Ratio	128
Ι	Batch Bioreactor cultivation Controlled pH	129
J	Batch Bioreactor cultivation Uncontrolled pH	130
K	Fed-Batch Bioreactor (Glucose Feeding)	131

L	Fed-Batch Bioreactor (Full Media Feeding)	132
М	Different Se Concentration	133
Ν	Different Addition Time	133
0	Se Absorption in Growth Kinetic	134
Р	Se Absorption at Post Harvest	134
Q	Batch Cultivation of Se enriched S. boulardii	135
R	Fed Batch Cultivation of Se Enriched S. boulardii	137

CHAPTER 1

INTRODUCTION

1.1 Research Background

Probiotic organisms or biotherapeutic agent can be defined as live microorganisms which feed on or use in adequate amounts will beneficially affects the host by improving its intestinal microbial balance (Wohlgemuth *et al.*, 2010). The gastrointestinal (GI) microflora is a complex ecosystem that has to be equilibrium with the host. Whereby the clinical disorder within the GI might occur once the equilibrium state has been disturb. *Lactobacilli* and *Bifidobacteria* is one of the most famous probiotics bacteria since they are the normal inhabitants of the human gut. The discovery of the yeast strain that can withstand and grow optimally in 37 °C has managed to discover a new strain that have large potential to the gastrointestinal (GI) microflora. Although yeast accounts for only a minority of the organisms which making up the microbiota, it has larger cell size compared to bacteria whereby up to 10 times larger. Therefore it might represent a significant stearic hindrance for bacteria.

Saccharomyces boulardii is the only probiotic that has been proven effective in the double-blind studies and commonly found as a health supplement (Sazawal *et al.*, 2006). It was discovered by a French Microbiologist, Henri Boulard in 1923 when he was searching for a new yeast strain for making wine that withstand of the high temperature (Malgoire and Vandenplas, 2000).

Nowadays *Saccharomyces boulardii* has been used in many countries either as preventive or therapeutic agent for diarrhea and also other GI disorders which cause by administration of antimicrobial agents. The properties that residue by *S. boulardii* has made it a great potential for probiotic agent. It can survive the transit through the GI tract, 37 °C of optimum temperature and also it can inhibit the growth in some microbial pathogen. Yeast is a good candidate for probiotic studies as it resistance to the local stresses when enter the GI tract such as enzymes, bile salts, organic acids and variation of pH and temperature.

During the 20th century many research has been conducted in order understanding the mechanisms of action and its benefits to the host organism. The research has been progress as they managed to understand the mechanism of action of the *S. boulardii* to the host organism. It has been discovered that *S. boulardii* has efficacy as an adjuvant agent for the treatment of diarrhea and also has the efficiency to prevent the antibiotic associated diarrhea (AAD).

Trace elements is important for human body in maintaining normal and yet complex physiological functions related to growth and development. Unlike major elements, such as carbon, hydrogen, nitrogen, oxygen, chlorine, phosphorous, potassium, sodium and so on which are present as the major constituent of body tissues, trace elements are present in body tissues at sub $\mu g g^{-1}$ levels but often acts as essential factors or co factors in biological process. Among there trace elements, Selenium (Se)

and Arsenic (As) are the only metalloid which are considered to be essential in life (Gissel-Nielsenetal, 1984). From the periodic Table selenium compound can be found to be metallic and non metallic in characteristic and can form cationic and anionic compounds.

Selenium has been known for it is toxicity at high concentration and affects to the central nervous system (Diaz-Alcaron *et al.*, 1994). However recently selenium has been recognize to play a role as essential dietary supplement for the human. Deficiency in Selenium uptake has been associated with loss of hair pigment and macrocytosis in intravenously fed children (Navarro and Cabrera, 2008).

Inorganic selenium is generally toxic compared to organically bound forms. Therefore the organically production of selenium is very important as it has role in human diet. The production of selenium yeast is a key factor to obtain organically and safe selenium uptake by human. Moreover discovery of the *S. boulardii* has provided advantageous for researchers to further study on the production of selenium enriched yeast that able to perform as probiotic yeast as well.

1.2 Problem Statement

One major problem in the previous experimental of Se enriched yeast production was the complexity in the yeast production process. Previous research was focus more on process which intended for the production of only final product which is Se without consideration of cell mass production. Since, early stage of yeast growth is very critical in the fermentation process even though large fermenter with complex system control (pH, aeration, DO, etc) are used in order to grow yeast in good condition. This is even more difficult to manage when Se has to be incorporated to the yeast during cultivation process. More over yeast cultures inoculated with Se in previous studied, seemed to indicate a stunted primary growth stage which can be related with an increasing in toxicity of the Se therefore resulting a limited final biomass as well as low Se incorporation rate.

On the other hand, In spite of many literatures published concerning the importance of *S. boulardii* and its medical applications, very little information are available for cultivation and cell mass production. Thus through optimization of cell mass production of *S. boulardii* will provide platform for understanding more on *S. boulardii* cultivation process. Apart from that production of Selenium enriched *S. boulardii* will provide new dimension of Selenium enriched *S. boulardii*.

1.3 Objective of the Study

The objective of this study is to optimize high cell mass cultivation of *S*. *boulardii* and to achieve a good process for selenium enriched *S*. *boulardii* production.

1.4 Scopes of Research

The scope of this research are :

- 1 Study high cell mass production of *S. boulardii*:
- a) Media optimization study for high cell mass production of *S. boulardii* using classical and statistical approach in shake flask cultivation
- b) Comparison between optimize and non- optimized media on cell mass production of *S. boulardii*
- c) Batch cultivation of *S. boulardii* in a 16-L stirred tanked bioreactor for high cell mass production under controlled and uncontrolled pH
- d) Fed-batch cultivation of *S. boulardii* in a 16-L stirred tanked bioreactor for high cell mass production

- 2 Study the cultivation of *S. boulardii* in Selenium supplemented media.
- a) Treatment of different Selenium concentration on *S. boulardii* growth and Selenium enrichment in shake flask cultivation level
- b) Study the effects of Selenium enrichment protocols in *S. boulardii* at various points at cell cycle.
- c) Study of Selenium absorption kinetic in *S. boulardii* growth curve
- d) Enrichment of Selenium in post harvest S. boulardii cultivation
- e) Batch cultivation of Se enriched *S. boulardii* in a 16-L stirred tank bioreactor for production of Selenium enriched yeast
- f) Fed-batch cultivation of Se enriched *S. boulardii* in a 16-L stirred tank bioreactor for high Selenium enriched cell production

REFERENCES

- Aguilar. F., Autruo. H., Barlow. S., Castle. L., Crebelli. R., Dekant. W., Engel. K.H., Gontard. N., Gott. D., Grilli. S., Gurtler. R., Laren. C.J., Leclerq. C., Leblanc. J.C., Malcata. F.X., Mennes. W., Milana. M. R., Pratt. I., Rietjens. I., Tobback. P., and Toldra. F. (2008) Selenium-enriched Yeast as Source for Selenium Added for Nutritional Purposes in Foods for Particular Nutritional Uses and Foods (including food supplements) for the General Population. *The European Food Safety Authority*. 766: 1-42
- Alfthan, G., Aro, A., Arvilommi, H. and Huttunen, J. K. (1991). Selenium Metabolism and Platelet Glutathione Peroxidase Activity in Healthy Finnish Men: Effects of Selenium Yeast, Selenite and Selenate. *The American Journal of Clinical Nutrition*. 53(1): 120-125.
- Allison, M. J., Mayberry, W. R., McSweeney, C. S. and Stahl, D. A. (1992) A Rumen Bacterium That Degrades Toxic Pyridinediols. *Systematic and Applied Microbiology*. 15: 522–529.
- Bai, F. W., Anderson, W. A. and Moo-Young. M. (2008) Ethanol Fermentation Technologies From Sugar and Starch Feedstocks. *Biotechnology. Advance*. (26): 89-105
- Bekatorou, A., Psarianos, C. and Kautinas, A, A. (2006). Production of Food Grade Yeasts. *Food Technology Biotechnology*. 44(3): 407–415.
- Bely, M., Salmon, J. M., and Barre, P. (1990). Assimilable Nitrogen Addition and Hexose Transport System Activity During Enological Fermentation. *Journal of the Institute of Brewing*, 100(4): 279-282.
- Betlran. G., Esteve-Zarzoso. B., Rozes. N., Mas, A. and Guillamin, J., M. (2004) Influence of The Timing of Nitrogen Additions During Synthetic Grape Must

Fermentations on Fermentation Kinetics and Nitrogen Consumption. *Journal of Agriculture and Food Chemistry*. 53(4): 996-1002.

- Blackwell, K. J., Singleton, I., and Tobin, J. M. (1995). Metal cation uptake by yeast: a review. *Applied microbiology and biotechnology*, 43(4), 579-584.
- Brady, D. and Duncan, J. R (1994). Bioaccumulation of Metal cations by Saccharomyces cerevisiae. Applied Microbioogy and Biotechnoogyl. 41: 149 – 154.
- Brown, K. M. and Arthur, J. R. (2001). Selenium, Selenoproteins and Human Health: A Review. *Public Health Nutrition*. 4: 593-599.
- Caetano, J. A., Parames, M. T. and Babo, M. J. (1986). Immunopharmacological Effects of Saccharomyces boulardii in Healthy Human Volunteers. International Journal of immunopharmacology. 8: 245-259.
- Casas López, J. L., Sánchez Pérez, J. A., Fernández Sevilla, J. M., Acién Fernández, F. G., Molina Grima, E., and Chisti, Y. (2003). Production of Lovastatin by *Aspergillus terreus*. Effects of the C: N Ratio and The Principal Nutrients on Growth and Metabolite Production. *Enzyme and microbial technology*. 33(2): 270-277.
- Castagliuolo, I., Reiglar, M. F. and Valenick, L. (1999). Saccharomyces boulardii Protease Inhibits The Effects of Clostridium Difficile Toxins A and B in Human colonic Mucosa. Infection and immunity. 67: 302-307.
- Chanda, S. and Chakrabarti, S. (1996). Plant Origin Liquid Waste: A Resource For Single Cell Protein Production by Yeast. *Bioresource Technology*. 57(1): 51-54.
- Chen, J. (2012). An Original Discovery: Selenium Deficiency and Keshan Disease (An Endemic Heart Disease). *Asia Pacific journal of clinical nutrition*. 21(3): 320.
- Czerucka, D., Dahan. S. and Mograbi, B. (2000). *Saccharomyces boulardii* Preserves The Barrier Function and Modulates The Signal Transduction Pathway Induced

in Enteropathogenic *Escherichia coli* Infected T84 cells. *Infection and Immunity*. 68: 5998-6004.

- Czerucka, D., Roux, I. and Rampal, P. (1994) Saccharomyces boulardii Inhibit Secretagogue- Mediated Adebosine 3', 5'-cyclic monophosphate Induction In Intestinal Cells. Gastroenterology. 106: 65-72.
- Czerucka, D., Piche, T. and Rampal, T. (2007). Review article: Yeast as probiotics, Saccharomyces boulardii. Alimentary Pharmacology and Therapeutic. 26: 767– 778
- Damtew, W., Emire, S. A., and Aber, A. B. (2012). Evaluation of Growth Kinetics and Biomass Yield Efficiency of Industrial Yeast Strains. Archives of Applied Science Research. 4(5): 1938-1948
- Demirci. A, Anthony L. Pometto III, and Donald J. Cox (1999). Enhanced Organically Bound Selenium Yeast Production by Fed-Batch Fermentation. *Joural of Agriculture Food and Chemistry*. 47: 2496–2500.
- Diaz, A. J. P., Navarro A. M., Lopez, G., Serrana, D. I. H. and Lopez, M. M. C. (1994). Determination of selenium levels in vegetables and fruit by hydride generation atomic absorption spetrophotometry. *Journal of Agriculture Food and Chemistry*. 42: 2848-2851.
- Domingues, L., Lima, T. and Teixeira. A. J. (2005). Aspergillus niger β -galactosidase Production by Yeast in A Continuous High Cell Density Reactor. Process Biochemistry. 40: 1151–1154.
- Du, L. P., Hao, R. X., Xiao, D. G., Guo, L. L., and Gai, W. D. (2012). Research on the Characteristics and Culture Conditions of Saccharomyces boulardii. Advanced Materials Research, 343: 594-598.
- Duncas, L. H., and Benvenga, S. (2014). Selenium: An Element For Life. *Endocrine*. 1-20.

- Edwards-Ingram, L., Gitsham, P. and Burton, P. (2007). Genotypic and Physiological Characterization of Saccharomyces boulardii, The Probiotic Strain of Saccharomyces cerevisiae. Application of Environmental Microbiology. 73: 2458-2467.
- El Enshasy, H. A. and El Shereef, A. A. (2008). Saccharomyces boulardii Adapted to Dryness Stress: Optimization of High Cell Density Cultivation of Yeast. Deutsche Lebensmittel-Rundschau. 104: 389-393.
- Esmaeili, S., and Khosravi-Darani, K. (2014). Selenium-Enriched Yeast: As Selenium Source for Nutritional Purpose. *Current Nutrition & Food Science*. 10(1): 49-56.
- Esmaeili, S., Khosravi-Darani, K., Pourahmad, R., and Komeili, R. (2012). An Experimental Design for Production of Selenium-Enriched Yeast. *World Applied Sciences Journal*. 19(1): 31-37.
- Esposito, A., Pagnanelli, F. and Veglio. F. (2002). PH Related Equilibria Models for Biosorption in Single Metal Systems. *Chemical Engineering Science*. 57: 307– 313.
- Ferreira, S. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G. C., and Dos Santos, W. N. L. (2007). Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. *Analytica chimica Acta*. 597(2): 179-186.
- Finley, J. W. (2006). Bioavailability of Selenium from Foods. *Nutrition Reviews*. 64(3): 146-151.
- Foster, L. H., and Sumar, S. (1997). Selenium in Health and Disease: A Review. *Critical Reviews in Food Science & Nutrition*. 37(3): 211-228.
- Gao. H and Tan. T (2003). Fed-batch Fermentation for Ergosterol Production. *Process Biochemistry*. 39: 345-350.

- Ge, K., and Yang. G. (1993). The Epidemiology of Selenium Deficiency in The Etiological Study of Endemic Diseases in China. American Journal of Clinical Nutrition. 57: 259 – 263.
- Goyal, N., Jain, S. C., Banerjee, U. C. (2003). Comparative Studies on The Microbial Adsorption of Heavy Metals. *Advances Environment Research*. 7: 311–319.
- Guerra, C., Schuhmacher, A. J., Cañamero, M., Grippo, P. J., Verdaguer, L., Pérez-Gallego, L and Barbacid, M. (2007). Chronic Pancreatitis is Essential for Induction of Pancreatic Ductal Adenocarcinoma by K-Ras Oncogenes in Adult Mice. *Cancer cell*. 11(3): 291-302.
- Gutierrez-Rojas. I., Torres-Geraldo. A. B. and Moreno-Sarmiento. N. (2011) Optimizing Carbon and Nitrogen Sources for Azobactor chroococcum Growth. African Journal of Biotechnology. 10(15): 2951-2958.
- Heijnen, J. J. (1999). *Bioenergetics of microbial growth*. Encyclopedia of Bioprocesstechnology, Fermentation, Biocatalysis and Bioseparation. John Wiley and Sons. New York
- Hennequin, C., Thierry, A. and Richard, G.F. (2001). Microsatellite typing as a new tool for identification of *Saccharomyces cerevisiae* strains. *Journal Clincal Microbiology* 39: 551-559
- Jahn Hu, Ullrich, R. and Schneider, T. (1996). Immunological and Tropical Effects of Saccharomyces boulardii on the Small Intestine in Healthy Human Volunteers. Digestion 57: 95-104.
- Jean-Luc Legras, Didier Merdinoglu, Jean-Marie Cornuet and Francis Karst. (2007.) Bread, beer and wine: *Saccharomyces cerevisiae* diversity reflects human history. Molecular Ecology 16 (10): 2091–2102.
- Jianqiang. L, Sang. M. L, Ho-Joon. L, and Koom. Y. M (2000). Modeling of Typical Microbial Cell Growth in Batch Culture. *Biotechnology of Bioprocess Engineering*. 5: 382-385

- Kapoor, A. and Viraraghavan, T. (1997a). *Handbook of Fungi as Biosorption* Biosorbents for Metal Ions. London. *UK: Taylor & Francis*. 67–85.
- Kapoor, A., and Viraraghavan, T. (1997b). Heavy Metal Biosorption Sites in Aspergillus niger. Bioresource Technology, 61(3): 221-227.
- Kollaritsch, H., Holst, H., Grobara, P., and Wiedermann, G. (1993). Prevention of Traveler's Diarrhea with *Saccharomyces boulardii*. Results of a placebo controlled double-blind study. *Fortsschritte der Medizine* 111: 152-156.
- Kumpulainen, J. T. (1993). Selenium in Foods and Diets of Selected Countries: Conference on Trace Elements in Health and Disease. *Journal of Trace Elements* and Electrolytes in Health and Disease, 7(2): 107-108
- Kurugol, Z. and Koturoglu, G. (2005). Effects of Saccharomyces boulardii in Children with Acute Diarrhea. Acta Pediatrica . 94: 44-47
- Lewis and Freedman. (1998). Review article: The use of Biotherapeutic Agents in the Preention and Treatment of Gastrointestinal Disease. *Alimentary Pharmacology and Therapeutic*. 12: 807-822.
- Lin, E. S and Chen, Y. H. (2007). Factors Affecting Mycelia Biomass and Exopolysaccharide Production in Submerge Cultivation of Antrodia cinnamomea using complex media. Bioresource Technology 98: 2511-2517.
- López J. L. C., Pérez J. A. S., Sevilla J. M. F., Fernández F .G. A., Grima. E. and Christi, Y. (2003). Production of Lovastatin by *Aspergillus terreus*: Effects of the C:N ratio and the Principal Nutrients on Growth and Metabolite Production. *Enzyme and Microbial Technology* 33: 270–277.
- Malbe, M., Klaassen, M., Fang, W., Myllys, V., Vikerpuur, M., Nyholm, K., and Sandholm, M. (1995). Comparisons of Selenite and Selenium Yeast Feed Supplements on Se-incorporation, Mastitis and Leucocyte Function in Se-deficient Dairy Cows. *Journal of Veterinary Medicine Series A*, 42(1-10): 111-121.

- Mapolelo, M. and Torto, N. (2004). Trace Enrichment of Metal Ions in Aquatic Environments by *Saccharomyces cerevisiae*. *Talanta*. 64: 39–47.
- Nagodawithana, T. W. and Gutmanis, F. (1985). Method for the Production of Selenium Yeast. U.S.Patent 4, 530,846.1985.
- Navarro, A. M. and Cabrera, V. C (2008). Selenium in Food and the Human Body: A Review. *Science of The Total Environment*. 400: 115 141
- Negrulescu, A., Patrulea, V., Mincea, M. M., Ionascu, C., Vlad-Oros, B. A., & Ostafe, V. (2012). Adapting the reducing sugars method with dinitrosalicylic acid to microtiter plates and microwave heating. *Journal of the Brazilian Chemical Society*, 23(12): 2176-2182.
- Nogueira, C. W., Zeni, G. and Rocha, J. B. (2004). Organoselenium and Organotellurium Compounds: Toxicology and Pharmacology. *Chemical Reviews*, 104(12): 6255-6286
- Parks, L. W., and Casey, W. M. (1995). Physiological implications of sterol biosynthesis in yeast. *Annual Reviews in Microbiology*, 49(1): 95-116.
- Rajashree, K., & Muthukumar, T. (2013). Preparation of Selenium Tolerant Yeast Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology Research. 3(3): 46-53
- Rayman, M. P. (2000). The Importance of Selenium to Human Health, National Center for Biotechnology Information, *The Lancet*. 356(9225): 233-241.
- Rosma, A., and Cheong, M. W. (2007). Effects of Nitrogen Supplementation on Yeast (*Candida utilis*) Biomass Production by Using Pineapple (*Ananas comosus*)
 Waste Extracted Medium. *Malaysian Journal of Microbiology*, 3(1): 19-26.
- Saini, K., Tomar, S. K., Sangwan, V., and Bhushan, B. (2014). Evaluation of *Lactobacilli* from Human Sources for Uptake and Accumulation of Selenium.*Biological Trace Element Research*. 160(3): 433-436.

- Sazawal, S., Hiremath, G., and Dhingra, U. (2006). Efficacy of Probiotics in Prevention of Acute Diarrhea: A Meta-Analysis of Masked, Randomized, Placebo-Controlled trials. *Lancet Infectious Disease*. 6: 374-382.
- Schrauzer, G. N. (2001). Nutritional Selenium Supplements: Product Types, Quality, and Safety. *Journal of the American College of Nutrition*, 20(1): 1-4.
- Schrauzer, G. N. (2003). The Nutritional Significance, Metabolism and Toxicology Of Selenomethionine. *Advances in Food and Nutrition Research*, 47: 73-112.
- Schrauzer, G. N. (2006). Selenium Yeast: Composition, Quality, Analysis, and Safety. *Pure and Apply Chemistry*. 78(1): 105–109.
- Shang, F., Shaohong, W., Wang, X. and Tan, T. (2006). Effect of Nitrogen Limitation on the Ergosterol Production by Fed-Batch Culture of Saccharomyces cerevisiae. Journal of Biotechnology 122: 285–292.
- Shuler, M. J. and Kargi, F. (2002) Bioprocess Engineering Basic Concepts Second Edition.Pearson Education International. United States: Prentice Hall PTR
- Simmons, P. and Singleton, I. (1996) A Method to Increase Silver Biosorption by An Industrial Strain of *Saccharomyces cerevisiae*. *Applied Microbiology and Biotechnology*. 45: 278-285
- Spallholz, J. E., and Hoffman, D. J. (2002). Selenium Toxicity: Cause and Effects in Aquatic Birds. *Aquatic Toxicology*. 57(1): 27-37.
- Spencer, J. F. T., Spencer, D. M and Figueroa, L. I. C. (1997). Yeast as Living Objects: Yeast Nutrition. Yeast in Natural and Artificial Habitats. Springer-Verlag Berlin Heidelberg. 68-80
- Stabnikova, O., Ivanov, V., Larionova, I., Stabnikov, V., Bryszewska, M. A., and Lewis, J. (2008). Ukrainian Dietary Bakery Product With Selenium-Enriched Yeast. LWT-Food Science and Technology. 41(5): 890-895.

- Standbury P. F., Whitaker, A. and Hall, S. J. (2003), Principles of Fermentation Technology, Butterworth-Heinemann, 200 Wheeler Road, Burlington 134, 225-238.
- Strain, J. J., Cashman, K. D., and Gibey, M. J. (2002). *Minerals and Trace Elements*. *Introduction to Human Nutrition*. Second Edition. The nutrition society textbook series. Wiley: *Blackwell Science Ltd*. 177–224.
- Suhajda, A., Hegoczki, J., Janzso, B., Pais, I. and Vereckey, G. (2000). Preparation of Selenium Yeast I. Preparation of Selenium Enriched Saccharomyces cerevisiea. Journal of Trace Element in Medicine and Biology.14: 43-47.
- Thomsson, E., Larsson, C., Albers. E., Nilsson, A., Franzen, C. J. and Gustafsson, L. (2003). Carbon Starvation Can Induce Energy Deprivation and Loss Of Fermentative Capacity In Saccharomyces cerevisiae. Applied Environment Microbiology. 69(6): 3251-3257.
- Tsai, J. C., Aladegbami, S. L. and Vela, G. R (1979), Phosphate Limited Culture of *Azotobacter vinelandii, Journal of Bacteriology* 139: 639-64.
- Tuite, M. F., and Oliver, S. G. (1991). Saccharomyces Biotechnology Handbooks.
- Tuman, R. W. and Doisy, R. J (1977): Metabolic Effects of the Glucose Tolerance Factor (GTF) in Normal and Genetically Diabetic Mice. American diabetic Association. 26: 820 - 826.
- Van Maris, A. J., Abbott, D. A., Bellissimi, E., van den Brink, J., Kuyper, M., Luttik, M. A and Pronk, J. T. (2006). Alcoholic Fermentation of Carbon Sources in Biomass Hydrolysates by Saccharomyces cerevisiae: Current status. Antonie Van Leeuwenhoek, 90(4): 391-418.
- Vasudevan, P., Padmavathy, V., & Dhingra, S. . (2003). Kinetics of Biosorption of Cadmium on Baker's yeast. *Bioresource Technology*, 89(3): 281–287.
- Venardos, K. M. and Kaye, D. M. (2007). Myocardial Ischemia-Reperfusion Injury, Antioxidant Enzyme Systems, and Selenium: *A Review*. 14: 1539-1549.

- Venkateshwaran, G, Somashekar. D, Prakash. M. H, Agrawal. R, Basappa. S. C and Joseph. R. (1999). Production and Utilization of Catalase Using Saccharomyces cerevisiae. Process Biochemistry 34: 187-191.
- Verstrepen. K. J., Iserentant. D, Malcorps. P., Derdelinckx. G, Dijck. P. V., Winderickx. Pretorius. I. S., Thevelei. J. M. and Delvaux. F. R., (2004). Glucose and sucrose: Hazardous fast-food for industrial yeast, *Trends Biotechnology*. 22531–22537.
- Walker G. M (1994). The Role of Magnesium in Biotechnology. Critical Review of Biotchnology 14: 311-354
- Wang, J. L (2002). Immobilization Techniques for Biocatalysts and Water Pollution Control. Beijing: Science Press
- Wang, Y and Lobstein, T. (2010). Worldwide Trends in Childhood Overweight and Obesity. *International Journal of Pediatric Obesity* 1: 11–25.
- Whanger, P. D. (1992). Selenium in the Treatment of Heavy Metal Poisoning and Chemical Carcinogenesis. *Journal of Trace Elements and Electrolytes in Health* and Disease, 6(4): 209-221.
- Zanello, G., Meurens, F., Berri, M. and Salmon, H. (2009). Saccharomyces boulardii Effects on Gastrointestinal Disease. Current Issues in Moecular. Bioogy. 11: 47-58
- Zhi lieu, Qiang. W., Yuan, Y. L, and Fang, F. (2009) Statistical Optimization of Culture Media and Condition for Production of Mannan by Saccaromyces cerivisiae. Biotechnology and Bioprocess Engineering, 14: 577-583