EFFECT OF GRAPHENE OXIDE (GO) IN IMPROVING THE PERFORMANCE OF HIGH VOLTAGE INSULATOR

NUR FARAH AIN BINTI ISA

UNIVERSITI TEKNOLOGI MALAYSIA

EFFECT OF GRAPHENE OXIDE (GO) IN IMPROVING THE PERFORMANCE OF HIGH VOLTAGE INSULATOR

NUR FARAH AIN BINTI ISA

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical Power)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JUNE 2015

Dedicate to my beloved family:

Ira bin Puteh (father) Aminah binti Othman (mother) Farahida binti Ira (rirter) You are all my inrpiration and my rtrength What I have been through. you were there all the time. and

> All my friends in MEP programme for their support and encouragement

ACKNOWLEDGEMENT

A I h a m d u I i I I a h i r a b i I a I a m i i n and thank to Allah SWT for blessing me for ensuring myself to be healthy to carry out my study and to complete this project. I wish to express my sincerest appreciation to my supportive supervisor Dr. Muhammad Abu Bakar Sidik for the guidance and persistent help given throughout the progress of this project. I like to express my thanks to Dr. Mat Uzir, deputy Director of Composite Centre and all IVAT staff and technicians who were involved in this project. Finally, I would also like to thank all my fellow friends for their support and assistance technically and mentally in various occasions. All your kindness would not be forgotten. And I am grateful to all my family members.

ABSTRACT

Research work of polymer nanocomposites in high voltage insulator becomes interest nowadays. Polymer based and nanofillers are the core components in polymer nanocomposites. In previous works, by adding such a big amount of nanofiller it will enhance the electrical and mechanical properties of polymers. However as for today, a little percentage of nanofiller concentration could dramatically enhanced the properties of the polymeric material. Partial discharge in insulator material is one of a big issue in high voltage system that leads to electrical degradation and thermal losses. Recent research of graphene oxide (GO) nanofiller has brought to this project interest. Hence, this work focused into the development and simulation of PMMA (poly methyl methacrylate)/GO nanocomposites followed by PD test according to CIGRE METHOD II. The PMMA/GO and pure PMMA was synthesized by using radical polymerization and solvent dissolution method meanwhile simulation process was conducted using COMSOL Multiphysics software. From this work it could be noticed that the PMMA/GO has better performance.

ABSTRAK

Kerja penyelidikan nanokomposit polimer dalam penebat voltan tinggi menjadi kepentingan pada masa kini. Polimer asas dan nanofillers adalah komponen teras dalam nanokomposit polimer. Dalam karya-karya sebelum ini didapati bahawa dengan menambah jumlah yang besar daripada nanofiller ia akan meningkatkan sifatsifat elektrik dan mekanikal polimer. Walau bagaimanapun untuk hari ini, dengan peratusan yang sedikit bagi nanofiller mampu memberi impak yang mendadak dalam peningkatan sifat bahan polimer. Pelepasan separa dalam bahan penebat adalah salah satu isu besar dalam sistem voltan tinggi yang membawa kepada degradasi bahan elektrik dan kehilangan haba. Penemuan-penemuan terbaru daripada graphene oksida (GO) nanofiller telah membawa kepada tumpuan pengkajian untuk projek ini. Oleh itu, projek ini fokus kepada pembangunan PMMA (poli metil metakrilat) / GO nanokomposit diikuti dengan ujian PD mengikut CIGRE KAEDAH II. Fabrikasi PMMA / GO telah disintesis dengan menggunakan pempolimeran radikal dan diikuti dengan pembikinan PMMA melalui kaedah pelarutan pelarut sementara proses simulasi pula menggunakan perisian Comsol Multiphysics. Melalui penulisan ini, ia boleh dilihat bahawa PMMA / GO mempunyai prestasi yang lebih baik.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE	
	TABLE OF CONTENTS			
	LIST	Γ OF TABLES	ix	
	LIST	COF FIGURES	Х	
	LIST	COF ABBREVIATIONS	xii	
	LIST	Γ OF SYMBOLS	xiv	
	LIST	T OF APPENDICES	XV	
1	INTTI	DODUCTION	1	
1		Robuction Background of Study	1	
	1.1	Dackground of Study Problem Statement	1	
	1.2	Objective	2	
	1.4	Scope of work	2	
	1.5	Hypothesis	3	
2	LITI	ERATURE REVIEW	4	
	2.1	Introduction	4	
	2.2	Introduction to Partial Discharge	4	
	2.3	Partial discharge test of Polymer Nanocomposite	5	
	2.4	Poly (methyl methacrylate), PMMA	7	
	2.5	Past research on Graphene oxide and its recent	10	
		development as nanofiller	10	
	2.6	Fabrication of Graphene Oxide and polymer	15	
		nanocomposites and its application	15	
	2.7	Radical polymerization	22	

3	3 METHODOLOGY		
	3.1	24	
		nanocomposite	24
	3.2	Preparation of specimen	25
	3.3	Configuration of Cigre method II	30
	3.4	Partial Discharge Test Preparation	33
	3.5	Simulation using Comsol	35
4	RESU	ULT AND DISCUSSION	37
	4.1	Introduction	37
	4.2	Result of mesh and surface of electric potential	20
		in both samples	30
	4.3	Line graph of electric potential and electric field	41
	4.4	Experimental results for PD test	47
	4.4	.1 Results of pure PMMA specimen	47
	4.4.2 Results of PMMA/GO nanocomposite		40
		specimen	49
	4.5	PD test using Cigre Method II	50
5	CONCLUSION AND RECOMMENDATION		
	5.1	Conclusion	57
	5.2	Recommendation	58
REFERENC	CES		59
Apendixes A-B			62-67

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Synthesis method and properties of derivatives	14
	Graphene	
3.2	Composition of substance in dissolution process	25
3.1	Processes of making LDPE insulator.	31

LIST OF FIGURES

FIGURE	NO. TITLE	PAGE
2.1	CIGRE method II configuration	6
2.2	Polymer molecule in dissolution of polymer method	8
2.3	Schematic of one-dimensional solvent diffusion and polymer	10
	dissolution	
2.4	Structure of GO described by Lerf Klinowski model	12
2.5	Electrical transitions of GO paper	13
2.6	TEM micrograph image of GO/PMMA nanocomposite	17
	showing various arrangements	
2.7	SEM images of pure PMMA and PMMA/GO composite	20
	particle	
3.1	Project flow	24
3.2	Flowchart of preparation pure PMMA	26
3.3	Specimen measurement	27
3.4	Mold used to place pure PMMA	27
3.5	Graphite and graphene oxide solution	29
3.6	Flowchart of PMMA/GO nanocomposite	29
3.7	Cigre Method II configurations	30
3.8	PD measurement system schematic diagram	34
3.9	Value obtained once calibrate	34
3.10	PD test setup	35
3.11	PMMA/GO model for simulation	36
4.1	Mesh result for PMMA/GO sample	38
4.2	Mesh result for PMMA/GO sample	38
4.3	Mesh result for pure PMMA sample	38
4.4	PMMA/GO sample for electric potential at 11 kV input	39
4.5	Electric potential of Pure PMMA sample at no void at 5 kV in	put 40

4.6	Electric potential of Pure PMMA sample when has	40
	void at 5 kV input	
4.7	lectric potential of Pure PMMA sample when has	41
	void at 11 kV input	
4.8	Cross sample of void thickness	43
4.9	PMMA/GO line graph for electric potential	44
4.10	Line graph of electric potential for pure PMMA when	44
	no void introduced	
4.11	Line graph of electric potential for pure PMMA	45
	when void introduced	
4.12	PMMA/GO line graph for electric field at 5 kV input	45
4.13	PMMA/GO line graph for electric field at 11 kV input	46
4.14	Pure PMMA line graph for electric field at 5 kV input	46
4.15	Pure PMMA line graph for electric field at 11 kV input	47
4.16	Pure PMMA specimen	48
4.17	Pure PMMA specimen close up	49
4.18	PMMA/GO nanocomposite close up	50
4.19	Sine wave at 0kV of PMMA 1	51
4.20	Sine wave at 3kV of PMMA 1	51
4.21	Sine wave at 9kV of PMMA 1	52
4.22	Graph of PD magnitude, pC versus inject voltage, kV	53
4.23	Sine wave at 2kV of PMMA 2	54
4.24	Sine wave at 8kV of PMMA 2	54
4.25	Graph of PD magnitude, pC versus inject voltage, kV	55
4.26	Sample that is affected due to breakdown	56
4.27	Transition of PD in cavity to breakdown	56

LIST OF ABBREVIATIONS

GO	-	Graphene oxide
PMMA	-	Poly (methyl methacrylate),
LDPE	-	Low Density Polyethylene
PD	-	Partial Discharge
TEM	-	Transmission Electron Microscopy
SEM	-	Scanning Electron Microscopy
SWNT	-	Single wall carbon nanotube
LAH	-	Lithium aluminium hydride
CRG	-	Chemically reduces graphene
TRG	-	Thermally reduces graphene
TGA	-	Thermogravimetric analysis
VASA	-	Vacuum-assisted self-assembly
IVAT	-	Institute of High Voltage and High Current
MMA	-	Methyl methacrylate
TGA	-	Thermogravimetric analysis
Mw	-	Molecular weight
DI	-	Deionized
EMI	-	Electromagnetic interference
OLED	-	Organic light emitting diodes
PANI	-	Polyaniline
PVA	-	Polyvinyl alcohol
ATRP	-	Atom transfer radical polymerisation
EMI	-	Electromagnetic interference
XRD	-	X-ray powder diffraction
HPCD	-	Hyroxypropyl-β-cyclo-dextrin
PEI	-	Polyelectrolytes

PS	-	Polystyrene
SIS	-	Solid insulated switchgear
AIBN	-	Azobisisobutyronitrile
FTIR	-	Fourier transform infrared spectroscopy
PU	-	Polyurethane

LIST OF SYMBOLS

V	-	Voltage
Ι	-	Current
kV	-	kilo volt
k	-	constant
α	-	coefficient
μ	-	micro
А	-	Ampere
m	-	mili
VS	-	versus
E	-	Electric field
ρ	-	Charge density
03	-	Permittivity

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Simulation Details using Comsol	65
В	Experimental Equipements	69

CHAPTER 1

INTRODUCTION

1.1 Background study

The interest of polymer nanocomposites in academic and industry research have emerged and lead to wide discoveries of various fields such as biomedical, chemical, electrical and electronics. Polymer composite is the science of mixing the polymers such as polystyrene, polyethylene, polypropylene with other chemicals (nanofillers) to produce a polymer composite. Nanofillers are used to reinforce the base polymer which can increase the physical properties or play the role of certain processing characteristics. The reinforcing type nanofiller can improve tensile strength, modulus, tear strength and corrosion resistance of a compound.

Graphene oxide is formed from the oxidation of graphite where graphite is a three-dimensional carbon based material made up of millions of layers of graphene. Thus, graphene oxide is potential advanced nanofiller which can dramatically improve the dielectric properties of polymer based composite. The outstanding electrical and physical properties of graphene derivatives have made an enormous impact among researchers during past few years. Integration of individual graphene oxide and polymer nanocomposite thus will take advantage as one of the wellmatched integration as to improve insulating performance of the insulator.

1.2 Problem Statement

The internal discharge or also called partial discharge will result in a gradual erosion and reduction in the thickness of the insulator leading to breakdown. The occurrence of PD may alter the dielectric properties of electrical insulation, making them less effective as insulators. In order to overcome this problem, the dielectric materials need to make an improvement so that it can survive and withstand at long period. Besides, as in past few years of research, adding such a big amount of nanofiller will results in properties improvement however for recent research activities, by adding a little percentage of concentration is dramatically proved that it enhanced the properties of the polymeric material as for this case the material referred to insulators. Hence, for this project it is believe that it will act the same way. Also, less attention is focus into the investigation of graphene oxide compared to graphene even though both actually behave unique properties, so does graphene oxide as insulating materials can hold into account as increasing insulator performance or vice versa.

1.3 Objectives

- 1. To simulate the PMMA poly (methyl methacrylate)/GO nanocomposite
- 2. To study the characteristics of PMMA/GO nanocomposite.
- To investigate the electrical performance of pure PMMA at different number of concentration as well as PMMA/GO at difference percentage loading of nanofiller.

1.4 Scope of work

There are several scopes outlined in order to achieve the objectives. For experimental, it will cover the fabrication of samples (pure PMMA and PMMA/GO nanocomposite) and the partial discharge test in IVAT (Institute of High Voltage and High Current) by injecting high voltage up to 11 kV. Plus, the simulation work was carried out by using Comsol Multiphysics software. For simulation, it will cover the investigation to determine the effect of void in polymeric material. Note that the GO/PMMA nanocomposite will be fabricate using synthesis method and the preparation of work experiment is set according to CIGRE method II. The composite characteristics from the experimental results can be analyzed by using digital microscope that available in IVAT

1.5 Hypothesis

Modifying the host polymer by adding GO nanofiller is importance to result a new electrical insulation material. As encountered, nanofiller will enhance and improve polymeric material properties such as mechanical, chemical, thermal stability, and dielectrical. Moreover it was found that partial discharge is still the major problems in nanocomposite electrical insulation. Outstanding characteristics that are high surface area and high strength of new material-graphene oxide nanofiller thus would enhance the dielectrical properties of host polymer.

REFERENCE

- 1. IEC 60270 High-voltage test techniques Partial discharge measurements, third edition, 2000.
- 2. Naidu, Breakdown in Solid Dielectrics. p. 64-90
- T. Tanaka et al., Partial Discharge Analysis: Effects of Nano- and Micro-filler Mixture on Electrical Insulation Properties of Epoxy Based Composites. *IEEE Transactions on Dielectrics and Electrical Insulation*, 2006. Vol. 13, No. 1, pp. 319-326.
- Mahboob Hassan, et al., Analysis of Partial Discharge in Solid Sheet Insulation using CIGRE-II Method. *IEEE Trans. Dielectr. Electr. Insul*, 2012. p. 1-6.
- K. Y. Lau et al., Polymer Nanocomposites in High Voltage Electrical Insulation Perspective: A Review. *Malaysian Polymer Journal*, 2011. Vol. 6, No. 1, p 58-69.
- R. Sarathi et al., Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites. *Materials Science and Engineering*, 2007. p. 567–578.
- Engineering Plastics. Select Matbase website. Retrieved 19 April 2015 from http://www.matbase.com/material-categories/natural-and-syntheticpolymers/commodity-polymers/material-properties-of-polymethylmethacrylate-extruded-acrylic-pmma.html
- How a polymer get dissolved. Select polymer science learning centre website. Retrieved 25 April 2015 from http://pslc.ws/macrog/property/solpol/ps3.htm
- Beth A. Miller-Chou et al, A review of polymer dissolution. Prog. Polym. Sci., 2003.p 1223–1270
- 10. Sasha Stankovich et al., Graphene-based composite materials. *Nature Publishing Group*, 2006. Vol 442, p. 282-286.

- 11. Dmitriy A. Dikin, et al., Preparation and characterization of graphene oxide paper. *Nature Publishing Group*, 2007. Vol 448. p. 457-460.
- Daniel R. Dreyer, S Park, CW. Bielawski and Rodney S. Ruoff, The chemistry of graphene oxide. *The Royal Society of Chemistry*, 2009. p. 228-240.
- Hyunwoo Kim et al., Graphene/Polymer Nanocomposites. *Macromolecules*, 2010, 43, 6515–6530.
- 14. Xingyi Huang et al., Is Graphene Oxide an Insulating Material. *IEEE International Conference on Solid Dielectrics*, 2013. p. 904-907.
- N Saravan, et al., Graphene and modified graphene-based polymer nanocomposites - A review. *Journal of Reinforced Plastics and Composites*, 2014. p. 1158–1170.
- Karl W. Putz et al., High-Nanofi ller-Content Graphene Oxide–Polymer Nanocomposites via Vacuum-Assisted Self-Assembly. *Wiley-Vch Verlag Gmbh & Co.*, 2010. p. 3322–3329.
- 17. Mohsen Moazzami Gudarzi and Farhad Sharif, Self assembly of graphene oxide at the liquid–liquid interface: A new route to the fabrication of graphene based composites. *Soft Matter*, 2011. 7, p. 3432–3440.
- Raquel Verdejo et al, Graphene filled polymer nanocomposites. *Journal of Materials Chemistry*, 2011. p. 3301–3331.
- 19. M. Oliveira Et Al., Preparation Of Polymer-Based Nanocomposites By Different Routes By Different Routes. 2011. p. 1-22.
- 20. Xiaoming Yang, Songmin Shang, Liang Li , Layer-Structured Poly(vinyl alcohol)/Graphene Oxide Nanocomposites with Improved Thermal and Mechanical Properties. *Journal of Applied Polymer Science*, 2010. p. 1355-1360.
- 21. Ke Zhang & Wen Ling Zhang & Hyoung Jin Choi, Facile fabrication of selfassembled PMMA/graphene oxide composite particles and their electroresponsive properties. 2013. *Colloid Polym Sci* 291:955–962.
- Jinhong Duet al., The Fabrication, Properties, and Uses of Graphene/Polymer Composites. *Macromol. Chem. Phys.*, 2012. p. 1060–1077.
- Tapan K. Das et al., Graphene-Based Polymer Composites and Their Applications. *Polymer-Plastics Technology and Engineering*, 2013. p. 319– 331.

- 24. Tatjana Haramina et al, Free Radical Polymerisation. Report on Project Week, University of Gottingen, 2004. p. 1-3.
- 25. David Ennis et al., Direct Spincasting of Polystyrene Thin Films onto Poly(methyl methacrylate). *Journal of Polymer Science: Part B: Polymer Physics*, 2006. pp. 3234–3244.
- Cecilia Forssén et al., Partial Discharges in a Cavity at Variable Applied Frequency Part 2: Measurements and Modeling. *IEEE Transactions on Dielectrics and Electrical Insulation*, 2008. pp. 1610–1616.
- 27. H. A. Illias et al., Partial Discharge Modelling in a Spherical Cavity within a Dielectric Insulation Material as a Function of Frequency. *IEEE Electrical Insulation Conference*, 2009. p. 55-59.
- 28. Szamel, PD measurement techniques. *Select BME website*. Retrieved 22 May 2015 from <u>https://vet.bme.hu/sites/default/files/tamop/vivem264en/out/html/vivem264en</u> .html
- 29. Alberto Ochoa et al., Explaining Diverse Application Domains Analyzed from Data Mining Perspective. *Licensee InTech*, 2012. p. 75-108.