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ABSTRACT 

 

 

 

 

Recent trend has focused on the importance of renewable energy resources in 

the electrical energy production system. Although a number of appealing advantages 

are expected, a large penetration of generation from renewable energy resources may 

cause some undesirable impact on system security and reliability due to the 

uncertainty of their generation output. One of the problems is the fluctuation 

character of wind energy where the output of wind power generation system is 

unpredictable due to the intermittent of wind speed. However, the probability of a 

particular wind speed occurring can be estimated. These can cause the output of a 

wind power plant is neither continuous nor controllable. Power system analysis 

should be able to cope with the influences resulting from the presence of this 

generation scheme. In this thesis, the influences of the integration of the renewable 

energy into power system via determination of Available Transfer Capability (ATC) 

are investigated. To calculate ATC incorporating wind generation, a power flow 

algorithm based on Newton-Raphson technique is used. The output of wind 

generation is determined by Monte Carlo Simulations (MCS). The limits considered 

in this work are bus voltage limit and line thermal limit. Meanwhile the power output 

of a Wind Turbine Generation (WTG) is obtained using the relationship between the 

power output and the wind speed. To model wind speed, common wind speed is used 

in terms of the mean and standard deviation of the wind speed. The proposed method 

has been applied on 5-bus system and IEEE 30-bus system. The result shows the 

improvement of ATC value due to inclusion of wind energy into the power system.  

For 5-bus system, the improvement of ATC value is about 0.28-2.56%, while for 

IEEE 30-bus system the improvement is about 10-23.53%. The ATC value will 

increase based on the variation of power output of wind energy. Meanwhile, WTG 

will contribute to the increase of ATC based on the available wind profile to 

compliment the contribution of ATC from conventional generation.  
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ABSTRAK 

 

 

 

 
Menjadi kebiasaan pada masa kini untuk memberi tumpuan kepada kepentingan 

sumber tenaga diperbaharui dalam sistem pengeluaran tenaga elektrik. Walaupun ia 

mempunyai beberapa kelebihan, penembusan besar penjanaan daripada sumber tenaga 

diperbaharui boleh menyebabkan beberapa kesan yang tidak diingini terhadap sistem 

keselamatan dan kebolehpercayaan kerana ketidaktentuan pengeluaran penjanaannya. 

Salah satu masalah adalah sifat tidak menentu tenaga angin di mana pengeluaran sistem 

penjanaan kuasa angin tidak dapat diduga disebabkan kelajuan angin yang terputus-

putus. Walau bagaimanapun, kebarangkalian kelajuan angin untuk tempoh yang tertentu 

boleh dianggarkan. Hal ini menyebabkan pengeluaran loji kuasa angin adalah tidak 

berterusan dan tidak dikawal. Analisis sistem kuasa yang dilakukan hendaklah dapat 

mengatasi kesan yang terhasil daripada kehadiran skim penjanaan ini. Dalam tesis ini, 

pengaruh integrasi tenaga diperbaharui ke dalam sistem kuasa melalui penentuan 

Keupayaan Pindahan Tersedia (ATC) dikaji. Untuk mengira ATC dengan penjanaan 

angin, algoritma aliran kuasa berdasarkan teknik Newton-Raphson telah digunakan. 

Keluaran penjanaan angin ditentukan oleh Monte Carlo Simulations (MCS). Had yang 

diambilkira dalam kajian ini adalah had voltan bas dan garisan had haba. Sementara itu, 

keluaran kuasa penjana turbin angin (WTG) diperolehi dengan menggunakan hubungan 

antara keluaran kuasa dan kelajuan angin. Untuk mencipta kelajuan angin, model angin 

biasa digunakan dalam segi nilai kelajuan min dan sisihan piawai. Kaedah yang 

dicadangkan ini telah diuji pada sistem 5-bas dan sistem IEEE 30-bas. Hasil kajian 

menunjukkan peningkatan nilai ATC disebabkan oleh kemasukan tenaga angin ke dalam 

sistem kuasa. Untuk sistem 5-bas, peningkatan nilai ATC adalah kira-kira 0.28-2.56%, 

manakala bagi sistem IEEE 30-bas peningkatan kira-kira 10-23.53%. Nilai ATC akan 

meningkat berdasarkan perubahan keluaran kuasa tenaga angin. Sementara itu, WTG 

akan menyumbang kepada peningkatan ATC berdasarkan profil angin yang ada selaras 

dengan sumbangan ATC daripada penjana konvensional. 
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction  

 

 

Renewable energy resources boast promising potentials for future use, and it 

has become a recent trend among electric power utility providers to integrate these 

resources into their energy production system. Renewable energy comes from natural 

resources such as sunlight, wind, rain, tides and geothermal heat, which are naturally 

replenished. Renewable energy is derived from natural processes, either directly or 

indirectly from the sun or from heat generated deep within the earth. These sources 

are expected to be able of supplying energy to humanity for almost another one 

billion years. It produces little to no pollution or greenhouse gases, and they will 

never run out. Besides that, renewable energy sources have promising potentials in 

the future of electricity production due to its sustainability, and it being 

environmental-friendly, apart from a source of low cost energy. 

 

 

These advantages have attracted both researchers and scientists from various 

countries such as Europe, United States (US), Japan, India, and China to focus their 

studies on this field. It is reported that US is targeting to increase their renewable 

energy resources to more than 55 % as  their additional generation capacity [1]. With 
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the prominent trend of integrating renewable energy into the energy production 

systems around the world, the Malaysian government has also shown a keen interest 

on the potential of renewable energy [2]. In 9
th

 Malaysian Plan (2006-2010), the 

Government of Malaysia also increased the fund for research and development 

(R&D) of renewable energy research [3]. It has been reported that by Renewable 

Energy Policy Network (REN2007), the potential of wind energy in Malaysia has 

increased by 28 %. The research from Universiti Kebangsaan Malaysia (UKM) at 

2005 shows that Weibull distribution is the fit distribution for the wind speed data at 

Terumbu Layang-Layang, Sabah [4]. Meanwhile, in 2007 two wind turbine was 

installed at Pulau Perhentian, Terengganu and it shows that 50 % of the electricity 

required at Pulau Perhentian can be fulfil by these wind turbines [5]. 

 

 

The most common types of renewable energy currently in practice are wind, 

hydropower, solar, hydrogen fuel cells, biomass and geothermal. Among all these 

available sources, wind power is generally considered as one of the most viable 

alternative energy resources [6]. The wind energy is an inexhaustible natural 

resource as well as a truly indigenous energy resource. As such, wind power has 

been receiving considerable attention as one of the most promising source of 

renewable energy.  

 

 

Countries such as the United States, Spain, Denmark and India utilize the 

wind to produce electricity in their country. According to Blanco and Rodrigues [7], 

wind energy already covers 3% of electricity demand in Europe, 23 % in Denmark 

and approximately 8% in Spain and Germany respectively. By 2050, wind energy is 

expected to provide half of Europe’s power [8]. There is also a research on the 

potential of wind energy in Malaysia, and it has been concluded that wind energy is 

the most suitable energy source to be applied and the wind energy system has great 

potential to be developed in Malaysia [5].  

 

 

http://www.renewableenergyworld.com/rea/tech/hydropower;jsessionid=349F8D61F7F6A8423EC386B9C9D672CA
http://www.renewableenergyworld.com/rea/tech/hydrogen;jsessionid=349F8D61F7F6A8423EC386B9C9D672CA
http://www.renewableenergyworld.com/rea/tech/geothermal-energy;jsessionid=349F8D61F7F6A8423EC386B9C9D672CA
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Wind energy’s cost of production is relatively lower compared to solar 

energy [9]. The installation of wind farm does not require excessively large area as 

the land area within a wind farm is still available for development. Also, it has very 

little impacts on the environment [9]. To generate electricity, the operation of wind 

energy does not pollute the atmosphere and is considered a clean energy because 

there are no greenhouse gas emissions.  

 

 

Despite the many advantages of renewable energy, it also has its 

disadvantages where it is considered as an unstable, unreliable, expensive source of 

energy. Naturally, any kind of energy resource is bound to have its own pros and 

cons. As such, one of the problems with wind energy is its intermittent characteristic. 

It is universally known that wind energy is highly dependent on wind speed but 

unfortunately, the wind does not always blow in a constant manner. If the wind speed 

is too low, wind turbine will not be able to produce electricity. On the other hand, if 

the speed is too strong, the wind turbine will shutdown to prevent damage. Besides 

that, it also depends on the location of the wind farm. Some regions have low 

probability of wind speed which renders wind harvest as a source of energy useless. 

 

 

In a deregulated power system, the computation of Available Transfer 

Capability (ATC) is important to ensure the reliability and security of the system. 

The Federal Energy Regulatory Commission (FERC) requires that the information of 

ATC be made publicly available through Open Access Same Time Information 

Network (OASIS) [10-12]. This information will help power marketers, sellers and 

buyers in reserving transmission services. Furthermore, these participants can plan 

their strategies in securing access to transmission network. Source bus is also called 

seller, who is a generation company that sells the generated power, while sink bus or 

the buyer is a distribution company who purchases power generated. 
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1.2 Available Transfer Capability in Deregulated Power System 

 

 

ATC in a transmission network is quantified by the allowable highest 

magnitude of power (MW) that can be transferred from the source to the sink over 

and above the already committed uses (base case) of the network as a whole without 

violating any constraints related to the transmission network security. These 

constraints are transmission elements’ thermal limits for power flow and bus voltage 

limits when the system remains in steady state [13]. By considering these limits, one 

can also include aspects of security assessment in the analysis of the state of any 

given power system. Meanwhile, United States FERC has defined ATC as the 

amount of transfer capacity that is available at a given time for purchase or sale in 

the electric power market under various system conditions [14]. 

 

 

ATC has become an important indication for all market participants in 

electrical power such Independent Power Producers (IPPs), retailer, distributor and 

customer. IPPs are private companies that participate in the generation sector and 

they sell electricity to the utilities. Besides that, ATC computation also determines 

the reliability of the system in unsecured situations. It becomes a significant index to 

indicate the amount of further usable transmission capacity for commercial trading. 

 

 

The Independent System Operator (ISO) may receive every energy demand 

from utility in the interconnected power system. All of these demands may be 

accepted if they are less than the ATC between two areas. ATC must also be 

calculated by ISO in real time for all the areas under its territory. Deregulation is 

significant to keep the transmission network secure and ISO needs to encourage the 

participant market such buyer and the seller and honour the viable transactions. For 

this objective, ISO determines an index on the unutilised transmission capacity 

which is ATC. Thus, ATC intimation by ISO is an important issue in deregulated 

power market. 
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1.3 Problem Statement 

 

 

  Many researchers have extensively explored the ATC. Nowadays, researchers 

have shown interest in addressing renewable energy into ATC calculation in power 

system. As mentioned before, wind energy is the most dynamic in the world because 

it is the most viable alternative energy. Although renewable energy has many 

advantages, but it is also have disadvantages for example, its generation may cause 

some problem and complications due to the uncertainty of their generation output.  

 

 

 There have been attempts to include renewable energy sources in ATC 

determination but many of them proved to have some drawbacks. X. Tong et al. [15], 

attempted to assess transfer capability with wind energy. However, it appears that 

this attempt had setbacks of impairment of ATC after the addition of wind energy 

into the system. Meanwhile, Quoqing et al. [16] and N. Paensuwan [17] did not 

taken uncertain nature of wind energy into consideration in ATC calculation. Since 

the power produced by wind energy strongly depends out on fluctuated wind speed, 

so the issue of uncertainty of the generation output from wind energy resources 

integrated into the calculation of ATC also need to be addressed by the proposed 

method. 

 

 

  In this thesis, the effects of integrating wind energy into power system on the 

security aspects of the system via determination of ATC are to be investigated. 

Besides that, the power system analysis should be able to cope with and examine the 

influences resulting from the presence of this sector. The issue of fluctuation of wind 

energy or the uncertainty of generation output of wind energy integrated into the 

calculation of ATC also need to be addressed.  
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1.4 Objectives of the Research 

 

 

The objectives of the research are:  

 

 

i. Construct a Wind Turbine Generation (WTG) model to represent 

fluctuation in wind energy for power system analysis. 

ii. Develop ATC determination of a power system with the peresent wind 

energy based on AC power flow method.  

 

 

 

 

1.5 Scope of the Research 

 

 

  The scopes of the research are listed below: 

 

 

i. The bus-to-bus power transfer based ATC will be determined by considering 

the steady-state limit, namely the line thermal and a bus bar voltage limit of 

transmission line. 

ii. The ATC determination is based on bus-to-bus transaction, while area-to-area 

transactions are not considered. 

iii. The uncertainty of wind energy will be considered by using Monte Carlo 

Simulation technique. 

iv. The wind energy model is based on typical power output model. The 

converter and control point of the wind system are not considered. 
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1.6 Contributions of the Research 

 

 

 The contribution of this thesis can be summarized as follows: 

 

i. Methodology to evaluate the power output of wind energy at multistate 

level using Monte Carlo simulation. 

ii. Comprehensive evaluation of ATC with integration of wind energy at 

different penetration level using power flow method. 

iii. Evaluations of the factors need to consider in the ATC calculation with 

integration of wind energy. 

 

 

 

 

1.7 Thesis Organization 

 

 

 This thesis is divided into five chapters. Brief descriptions of each chapter are 

as follows: 

 

 

Chapter 2 discusses the basic concepts of ATC and wind energy system. 

Besides that, this chapter also reviews the methodology in determination of ATC 

with and without wind energy previously done in prior work. 

 

 

Chapter 3 details the methodology that has been applied in calculation of 

ATC incorporating wind energy by using AC power flow analysis. This section also 

explains the process to obtain wind energy power output based on Monte Carlo 

Simulations.  
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Chapter 4 presents results and discussions of the proposed method. The 

comparisons between ATC before and after adding wind energy are also discussed. 

Furthermore, the impacts of wind energy implementation into the system on ATC are 

also described in this chapter.  

 

 

Chapter 5 concludes the thesis by providing conclusions of this research and 

several recommendations for future improvement of the work. 
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