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ABSTRACT 

Carbon Nanotube (CNT) is one of the promising materials to be discovered 

that can replace silicon as the material for nano scale electrical switch. CNTFET 

have been shown to have better performance, able to operate on shorter channel 

length and drive a lower power envelop as it MOSFET counterpart. The conductivity 

of CNT is determined by the chirality of the tube, which determines the diameter of 

the CNT. However, the chirality cannot be fully controlled directly during 

manufacturing of the material. Much efforts have been concentrated to have tight 

manufacturing control to have constant chirality. The effect of chirality variation is in 

the diameter of the CNT tube which is responsible for the current carrying capacity 

of the CNT. Non-uniform chirality will cause degradation in performance of logic 

circuits. The variation in chirality can be viewed as faults. For that reason, there is a 

crucial need to model defects introduced during manufacturing process. Current 

defect models are purely based on simple resistors to mimic stuck at 0 and stuck at 1 

which does not answer the basic question which is: “what is the optimum process 

control should be that so that even with variations in chirality, the circuit could still 

function? ”. The objective of this project is first, to model the defect of CNT based 

on current manufacturing issues, so that designers and manufacturer could simply 

predict the behavior of logic circuit.  Second, is to analyze logic circuit function with 

variations in chirality. Based on this result, a simple model is produced. The research 

methodology adopted in this project is analyzing the effect of changes in chirality 

and model it as a simple resistor in series with the fault free circuit. The work is 

based on simulation using HSPICE and the CNT is from Stanford CNT model. The 

result indicates that circuits could still function despite some changes in chirality 

which means manufacture still has some acceptable margin of errors.  
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ABSTRAK 

Karbon Tube Nano (CNT) adalah salah satu bahan baharu yang ditemui yang 

diharapkan boleh menggantikan silikon sebagai suis elektrikal nano. CNTFET telah 

menunjukkan prestasi yang lebih baik, kebolehan berfungsi pada saluran (channel) 

yang lebih pendek, dan memacu pada sampulan kuasa yang lebih rendah daripada 

teknolgi MOSFET sekarang. Kekonduksian CNT adalah ditentukan oleh 

‘chirality’nya, ‘chirality’ itu kemudian menentukan diameter CNT. Berbagai usaha 

ditumpukan dengan kawalan penghasilan yang ketat supaya menghasilkan chiral 

yang seragam. Ketidak seragaman chiraliti akan menyebabkan penurunan prestasi 

litar logic. Variasi chiraliti boleh dilihat sebagai kecacatan. Oleh kerana itu, 

memodelkan kecacatan daripada proses peghasilan adalah penting. Model kecacatan 

yang biasa diguna hanyalah berdasarkan penyelesaian ringkas sebuah perintang yang 

hanya mengambarkan ‘stuck at 0’ atau ‘stuck at 1’. Model ini tidak menjawab 

persoalan “Apakah kawalan proses yang optimum supaya walaupun dengan variasi 

chiraliti, litar masih boleh berfungsi? ”. Objektif project ini adalah pertama, untuk 

memodelkan isu penghasilan CNTFET, supaya pereka dan pembuat dapat 

meramalkan keberkesanan litar yang telah direka.  Kedua, adalah untuk menganalisa 

fungsi litar logic yang telah terdedah dengan variasi ‘chirality’. Berdasar hasil analisa 

projek ini, satu kecacatan telah dihasilkan. Kaedah penyelidikan yang digunakan 

adalah dengan menganalisa kesan-kesan perbezaan chiraliti dan memodelkan suatu 

perintang yang memberi makluman yang lebih luas tentang keberkesanan litar logic 

berbanding dengan litar yang tiada kerosakan. Hasil projek ini adalah berdasarkan 

simulasi yang dijalan meggunakan HSPICE dan meggunakan model CNTFET 

daripada Stanford. Hasil simulasi telah menunjukkan walaupun terdapat variasi 

‘chirality’ didalam litar, ia masih boleh berfungsi. Ini bermakna, terdapat julat ralat 

yang masih boleh diterima didalam proses pembuatan.  
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CHAPTER 1  

INTRODUCTION 

1.1 Overview 

This chapter describes some of the background information pertaining to this 

project. Also described in this is the objective and scope covered in this project.  

1.2 Background 

Carbon Nanotube Field Effect Transistor (CNTFET or CNFET) is one of the 

most promising components to replace MOSFET transistor. Figure 1.1 shows the 

summary of how carbon nanotube is explained by its basics structure from graphene 

taken from [1]. Research has shown that carbon nanotube can be used as the 

semiconducting channel between source and gate. This novel material is predicted 

could overcome the serious scaling limits related to fabrication technology and device 

performances faced by current MOSFET technology. 

This limits include quantum mechanical tunneling of carriers through the thin 

gate oxides, quantum mechanical tunneling of carriers from source to drain and from 

drain to body, control of the density and location of dopant atoms in the MOSFET 
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channel and source drain region to provide high on off current ratio, the finite sub-

threshold slope. [2] 

The theory of CNT transistors is still in its infancy and the technology is still 

emerging [3]. Computerized calculation of such high-performance transistors in 

digital circuits is absolutely essential to drive the device design and address the 

limitation in multi-gigahertz processor design [4]. However, from a circuit designer’s 

point of view, fast and simplified model is essential for circuit simulation and 

evaluation.  

 

Figure 1.1. Graphene (top) is 2D building material for other carbon materials. It can 

be wrapped up into 0D buckyballs, rolled into 1D nanotubes or stacked into 3D 

graphite [1]. 
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1.3 The Need for Fault Modelling 

Although CNTFET model have been established by wide variety of research 

group [3, 4, 5, 6]. Currently there is very little research on CNTFET fault model. 

While CNFET circuits are expected to offer an order of magnitude benefit in 

energy-delay-product (EDP) over silicon CMOS circuits, in reality, CNTFET is very 

difficult to fabricate. CNTFET is very prone to failure due physical limitation of 

current process technology. Significant imperfections inherent to CNTs pose 

substantial hurdles to realizing practical CNFET circuits. 

It is nearly impossible to precisely align and position all CNTs at VLSI scale. 

This limitation can cause stray conducting paths that result in incorrect logic 

functionality. Moreover, the CNT density distribution cannot be accurately controlled. 

CNT density variations can result in CNFET circuit performance variations and 

functional failures [7]. 

Metallic CNTs (m-CNTs) have zero or near-zero bandgap, and therefore cause 

source-to-drain shorts in CNFETs. CNFETs that contain m-CNTs result in excessive 

circuit leakage power or even incorrect circuit functionality. [7] 

There is a continuous research effort to address fabrication issues in CNFET 

technology. Various techniques have been proposed to model and simulate CNFETs, 

and to evaluate their potential performance at the device-level in the presence of 

metallic tubes. Not much study, however, has been performed to analyze CNFET-

based real logic circuits when faults are present. 

Fault occurrences in new nanotechnologies are predicted to be significantly 

more as compare to conventional technology due to their size and speed 

characterizations [8, 9]. It is natural to expect that the future process technology will 

no longer be perfect at least when it is infancy stage. Ongoing research is being done 

to enable the design of robust systems that are resilient to hardware imperfections  

However in order to achieve device robustness, failure analysis engineers 

require reliable fault models in order to analyze its effect on circuit performance. This 

is the aim of this project.  
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1.4 Problem Statement 

CNTFET development is still bogged down by fabrication challenges. Even 

with the most advance manufacturing technology, CNFET fabrication is still produces 

high failure rate of the device. The most important challenge in the CNT growth 

process are the diameter control system and the presence metallic CNTs [10].  

Metallic CNTs (m-CNTs) is not desirable as it resulted in high conductivity 

making its current can no longer be controlled by the gate, causing source-drain shorts 

in the transistor. At the same time, variations in diameter changes the electrical 

properties of CNFET altering the tolerance to temperature, currents leakage, drive 

current and the threshold voltage [10]. Current synthesis process produces 1/3 of m-

CNTs and 2/3 of semiconducting CNTs (semi-CNTs) in random manner. The most 

advance CNTs growth techniques currently can produce up to 90% of semi-CNTs and 

even maximum of 96% [10]  there is still no process that can grow to 100% semi-

CNTs. This issue give rise to the need for different m-CNTs removal techniques post-

growth processing, namely electrical burning and selective chemical etching. 

Currently there is no process that grows nanotubes of only a specific diameter. 

Depending on the manufacturing method of the CNTs, diameter varies randomly, with 

every process yielded different mean diameters and diameter distributions [10]. 

An ”ideal” CNFET (Doped-S/D CNFET) which imitate the MOSFET devices 

is consist of one or more carbon nanotubes that aligned perfectly in which the section 

below the gate is intrinsic and the source/drain diameter extension regions are n/p 

doped. As is always the case, there are some challenges in CNFET manufacturing 

process.  

These challenges have not been address in current fault model for CNTFET. 

There is a need in CNFET fault modeling so that it can be incorporated to extend the 

current CNFET design methodology in order to produce a more robust circuit for 

failure analysis purposes.  

In addition, current defect models are purely based on simple resistors to 

mimic stuck at 0 and stuck at 1 which does not provide the optimum process control 

information on functionality with variations in chirality. 

Fabricated circuits could only function if the manufacturing process produces 

products according to the design plan. However as discussed previously, the 
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manufacturing of CNT is plague with issue of uncontrollable chirality among all other 

issue.  

Circuit designers always use a constant chirality for all designs. Constant 

chirality may not actually occur in practical fabrication. The cost to have a tightly 

controlled chirality could be too high and it may not necessary to have only one 

chirality. Minor changes in chirality might still produce acceptable circuit 

performance. 

Totally malfunction circuit such as stuck 0 and stuck 1 could be due to too 

large change in chirality and this could be easily controlled in fabrication.  

Research on slight changes in circuit performance due to small changes in 

chirality which leads to respective defect model has not been conducted. 

Thus there is a need to translate changes in chirality issue to respective fault 

model. 

1.5 Objective 

This project focuses on fault model of CNFET due to small changes of 

chirality. 

The objectives are to: 

1. Analyze circuit performance with mixture of chirality. 

2. Identify how much deviation of chirality will cause certain failure or 

degradation in performance of logic circuit. 

3. Translate the degradations of circuit performance from part 1) and 2) 

above to a fault model. 
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1.6 Scope 

This project uses Stanford University CNFET Model. All simulations have 

been carried out using HSPICE. 

This project also only cover on digital logic circuit application with 

preliminary result dealing with basic inverter circuit and to other logic gate circuit. 
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