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ABSTRACT

GaN is a wide bandgap semiconductor with superb thermal, chemical, 
mechanical and electrical properties which makes it suitable for high power 
electronic and optoelectronic devices. Si substrate is preferable for the 
heterostructure growth of GaN due to its availability in large wafer size, low price 
and maturity. The co-integration of GaN-based devices on Si is very attractive 
towards the realization of advanced heterogeneous integration . A transformation of 
the grown Ga2O3 structures on Si to GaN by a so-called nitridation process is 
considered as a simple method to create a GaN/Si heterostructure. In the first stage, a 
synthesis of P-Ga2O3 nanostructures on Si substrate by electrochemical deposition 
using a mixture of Ga2O3, HCl, NH4OH, and H2O was performed. The morphologies 
strongly depended on the molarity of Ga2O3 and pH level of electrolyte. P-Ga2O3 
nanodot-like structures were grown at low molarity of Ga2O3. However, Ga2O3 
nanodot structures covered with nanorods on top of their surfaces were obtained at 
higher molarity, and the densities of nanorods seem to increase with the decrease of 
pH level. In the next stage, the nitridation of the electrodeposited Ga2O3 was 
performed. The complete nitridation was achieved at temperature of 900°C. Here, 
several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes 
were detected with no diffraction peak of Ga2 O3 structure. Temperature is a key 
parameter in a nitridation process where the deoxidization rate of Ga2 O3 to generate 
gaseous Ga2 O increase with temperature. It was found that a complete transformation 
cannot be realized without a complete deoxidization of Ga2O3. A significant change 
of morphological structures takes place after a complete transformation of Ga2 O3 to 
GaN where the original nanorod structures of Ga2 O3 diminish, and a new 
nanowire-like GaN structures appear. The studied method seems to be promising in 
producing high-quality h-GaN nanostructures on Si.
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ABSTRAK

GaN adalah bahan semikonduktor yang mempunyai sela jalur yang luas serta 
ciri-ciri yang luar biasa seperti ciri-ciri haba, kimia, mekanikal dan elektrik yang 
menjadikan ia sesuai untuk dijadikan sebagai peranti elektronik berkuasa tinggi dan 
peranti optoelektronik. Silikon (Si) substrat adalah lebih sesuai digunakan untuk 
pertumbuhan strukturhetero GaN kerana adanya saiz wafer Si yang lebih besar, harga 
yang murah dan kematangan teknologi berasaskan Si. Di samping itu, fabrikasi 
peranti berasaskan-GaN pada platform Si sangat menarik ke arah merealisasikan 
integrasi heterogen termaju. Pada peringkat pertama, strukturnano P-Ga2O3 telah 
disintesis pada substrat Si melalui proses pemendapan elektrokimia menggunakan 
campuran Ga2O3, HCl, NH4OH, dan H2O. Morfologi Ga2O3 yang dideposit sangat 
bergantung kepada molariti Ga2O3 dan tahap pH elektrolit. Struktur berupa nanodot 
Ga2O3 telah tumbuh diatas substrat Si pada keadaan molariti Ga2O3 yang rendah. 
Walaubagaimanapun, struktur nanodot Ga2 O3 dilitupi dengan nanorods di atas 
permukaannya diperoleh pada molariti yang lebih tinggi, dan ketumpatan nanorod 
kelihatan meningkat dengan penurunan tahap pH. Pada peringkat seterusnya, proses 
penitridaan Ga2O3 telah dilakukan selepas melalui proses electrokimia. Pada suhu 
900°C penitridaan yang lengkap telah dicapai. Pada suhu ini, beberapa puncak 
pembelauan utama diperolehi berpadanan dengan satah hexagon GaN (h-GaN) 
dikesan tanpa puncak pembelauan struktur Ga2O3. Suhu adalah parameter utama 
dalam proses peniridaan, dimana kadar penyahoksidaan bagi Ga2O3 untuk menjana 
gas Ga2O adalah meningkat dengan suhu. Transformasi lengkap Ga2O3 kepada GaN 
tidak dapat direalisasikan tanpa penyahoksidaan Ga2O3 yang lengkap. Perubahan 
ketara morfologi berlaku selepas transformasi lengkap Ga2O3 kepada GaN dimana 
struktur asal nanorod Ga2O3 telah mengecil dan nanowayar GaN yang baru telah 
muncul. Keputusan ini menunjukkan bahawa kaedah yang dibentangkan sangat 
berpontensi dalam menghasilkan struktur-struktur h-GaN yang berkualiti tinggi.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Gallium nitride (GaN) is a very hard, chemically and mechanically stable 

wide band gap (3.4 eV) semiconductor material with high heat capacity and thermal 

conductivity [1] which makes it suitable to be used for some electronics and 

optoelectronics devices. In recent years, gallium oxide (Ga2O3) has been studied as 

the seed material for chemical synthesize of GaN by thermal transformation method 

[2]. A transformation of the grown Ga2O3 structures on Si to GaN by a nitridation of 

Ga2O3 through the utilization of a so-called ammoniating process seems to be a 

promising technique to create a GaN/Si heterostructure. Furthermore, the integration 

of GaN-based devices on Si platform seems to be very attractive for the hybrid 

integration towards 'More than Moore' technology [3].

Superb properties of GaN which include direct wide band gap of 3.4eV 

makes it suitable to be used for high power electronic devices such as a field effect 

transistor (FET) [4-6], sensors [7-9] and optoelectronic devices such as light emitting 

diode (LED) [10-12]. Up to this date, many techniques have been explored to 

synthesize GaN nanostructures including nanowires, nanorods, nanodots and so forth 

since such low dimensional nanostructures are promising for increasing the 

performance optoelectronic devices and the sensitivity of sensors [13,14]. For 

example, GaN nanorods and nanowires have been applied for chemical sensing 

application as reported by Wright e/ and Huang Y e/ %A, respectively [15,16], due
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to large surface to volume ratio. GaN nanodots have been used in a photodetector as 

reported by Kumar e/ [17].

Several vapor-phase techniques have been reported for growing GaN 

nanostructures directly on Si with high quality which include molecular beam 

epitaxy (MBE) [18], metal-organic chemical vapor deposition (MOCVD) [19] and 

hydride vapor phase epitaxy (HVPE) [20]. However, these vapor-phase techniques 

are too expensive and their growth parameters are quite complicated. In recent years, 

a nitridation of Ga2 O3 nanostructures seems to be one of the alternative promising 

techniques [21] to form GaN nanostructures on Si. A transformation of the grown 

Ga2 O3 structures on Si to GaN by a so-called nitridation seems to be a simple method 

to create a GaN/Si heterostructure. For example, there are several studies reporting the 

formation of GaN nanostructures by annealing the sputtered Ga2O3 layer on metal-coated Si 

substrates in ammonia [22-25]. Unfortunately, these reports demonstrate that Ga2O3 

nanostructures cannot be grown without the assistance of metal catalyzers.

Recently, the growth of Ga2O3 nanostructures directly on Si without any 

assistance of metal catalyzer by using a simple electrochemical deposition is reported 

[26]. This liquid phase technique provides several advantages such as high 

controllability of thickness and morphologies of Ga2 O3 nanostructures due to less 

number of growth parameters. In this research, the formation of GaN nanostructures 

by ammoniating the electrochemically deposited P-Ga2O3 nanostructures on Si 

substrate was investigated. The effects of the nitridation times and temperatures were 

also studied.

1.2 Research Motivation

Recently, GaN on silicon carbide (SiC) or sapphire substrates have been 

widely used for several electronic applications due to specific requirements. 

However, these substrates are expensive and not available in large wafer size [27]. 

According to Kukushkin et al., Si substrate seems to be more preferable for the 

heterostructure growth of GaN due to the availability of Si in large wafer size, the
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low price of Si and the maturity of Si-based technology [28]. In addition, the 

integration of GaN based devices on Si platform seems to be very attractive for the 

hybrid integration towards "More than Moore" technology [3].

However, the integration of GaN nanostructures directly on Si still becoming 

a challenging issue due to the large lattice mismatch between GaN and Si which is 

16 % and thermal mismatch of 54% as reported by Kukushkin e/ [28]. According 

to Guha e/ %A, they are the first researchers who developed GaN LED on Si substrate 

by MBE technique, however, the grown films had several cracks and the fabricated 

LED had poor efficiency [1]. From this point of view, the major problem is to 

prevent direct growth of GaN on Si substrate. One of the ways to solve this problem 

is by introducing a buffer layer such as aluminium nitride (AlN), SiC, silicon nitride 

(SiN) and etc. on the Si substrate before the growth of GaN to accommodate the 

lattice mismatch between the Si substrate and GaN [27,28]. Many researchers 

combined two or three buffer layer in order to improve the quality of the grown GaN 

which can be considered as a complicated process [29-33]. Generally, depending on 

the growth technology, the fabrication of GaN can be realized.

A transformation of the grown gallium oxide (Ga2O3) structures on Si to 

GaN by a so-called nitridation seems to be a simple method to create a GaN/Si 

heterostructure. In this study, Ga2O3 nanostructures were deposited on Si substrate 

before the growth of GaN. Ga2O3 seems to be promising materials for chemical 

synthesis by thermal transformation method due to the relatively low lattice 

mismatch between Ga2O3 and GaN which is only 2.6% [34]. In this work, two-step 

process of the growth of GaN was conducted, first part of this work is formation of 

Ga2 O3 by an electrochemical technique and then followed by nitridation of the 

electrochemically deposited Ga2 O3 through the utilization of a so-called 

ammoniating process. The formation of GaN nanostructures by ammoniating the 

electrochemically deposited P-Ga2O3 on Si substrate was investigated.
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1.3 Research Objectives and Scopes

The objectives of this study are as follows:

i. To synthesize Ga2 O3 nanostructures on Si substrate deposited by 

electrochemical technique at room temperature and to characterize the 

deposited nanostructures in term of morphologies and composition properties.

ii. To study the formation of GaN through ammoniating the electrochemically 

deposited Ga2O3 on Si substrate by single zone CVD furnace and to 

characterize the properties of the ammoniated sample.

This research study involves a two-step process, firstly synthesize the Ga2 O3 

nanostructures by electrochemical technique and, secondly the nitridation of 

electrochemically deposited Ga2O3 to convert Ga2O3 into GaN. In electrochemical 

process, pH value of the electrolyte and Ga2 O3 concentration is the main parameter 

to control the morphologies of deposit Ga2O3 on Si substrate. Secondly, nitridation 

processes start with the setting-up of the single zone CVD furnace. Parameters such 

as nitridation time and temperature were controlled during the nitridation process to 

study suitable parameter for transformation of Ga2O3 into GaN.

1.4 Originality of This W ork

There are several studies that have been reported on the growth of GaN 

nanostructures by nitridation of the deposited Ga2O3. But, not much research has 

been reported on the growth of Ga2 O3 nanostructures by liquid phase technique as 

the seed for the nitridation. Examples of the liquid phase technique are hydrothermal 

and electrochemical technique. These liquid phase technique looked like promising 

techniques because Ga2 O3 nanostructures can be directly grown on the substrate 

without using any catalyzer. Moreover, there are several studies reporting the 

formation of GaN nanostructures by annealing the sputtered Ga2 O3 layer on 

metal-coated Si substrates in ammonia [22-25]. To our knowledge, the nitridation of 

the electrochemically deposited Ga2O3 structures on bare Si substrates to form GaN
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nanostructures without the assistance of metal catalyzers does not appear in the 

published literature.

According to Li e/ %A, they successfully synthesized GaN nanorods using a 

two-step process of deposited gallium oxide hydrate (GaOOH) by the microwave 

hydrothermal method prior to the nitridation process [35]. They were reported that 

simple heat treatment of GaOOH under the flow of ammonia (NH3) gas leads to the 

formation of GaN nanostructures at temperature as low as 800°C. However, at 

800°C, the transformation of Ga2 O3 to GaN is not complete and it still contains 

Ga2O3 materials in the sample. When the sample was annealed at 900°C and 1000°C, 

all the diffraction pattern of the XRD can be indexed as hexagonal wurtzite GaN and 

no peak of Ga2O3 was observed.

Another research that has been reported on the growth of Ga2O3 

nanostructures by liquid phase technique is electrophoresis technique, by Yang Li e/ 

[36]. This technique also involved two step processes for synthesizing GaN which 

are electrophoresis and ammoniating of Ga2O3. In this technique, the deposited 

Ga2O3 was ammoniated in an open tube furnace at a temperature of 950°C for 

15 minutes. From the XRD analysis, Ga2O3 was successfully transformed into GaN 

where they found that three strong diffraction peak was observed corresponding to 

hexagonal wurtzite GaN.

Other than liquid phase technique, most of the researchers deposited Ga2O3 

by magnetron sputtering prior to the nitridation process. According to Qin Lixia e/ 

%A, they successfully synthesized GaN nanowire by ammoniating the deposited 

Ga2 O3 film using radio frequency (RF) magnetron sputtering on Cobalt (Co) thin 

films, deposited on a Si substrate [22]. Co thin films were deposited as the buffer 

layer or catalyzer to assist the growth of Ga2O3 on Si substrate. Few studies have 

been reported on nitridation of Ga2O3 to GaN on Si substrate, but most of them using 

a metal catalyst to assist the growth of GaN prior to the nitridation.

From past studies, only few researches have been reported on the growth of 

Ga2 O3 by liquid phase technique. Up to this date, no such similar work is reported
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where a combination of liquid-phase such as electrochemical technique and 

vapor-phase methods is utilized to form GaN/Si heterostructure. Therefore, in this 

work we focus on the formation of GaN nanostructures by ammoniating the 

electrochemically deposited P-Ga2O3 nanostructures on Si substrate.

1.5 Research Activities

The implementation of this study has been summarized into a flowchart as 

shown in Figure 1.1. This study is focused on the formation of GaN nanostructures 

by nitridation of the electrochemically deposited Ga2 O3 nanostructures on Si 

substrates. This technique involved two step processes, firstly, depositing of Ga2O3 

nanostructures on Si substrate by the electrochemical technique, and then followed 

by a nitridation process to convert Ga2O3 into GaN.

The formation of Ga2O3 nanostructures on Si substrate is carried out by a 

simple set-up of the two terminal electrochemical deposition cells. Here, the Ga2 O3 

molarities and pH value of the electrolyte were varied. Then the morphological, 

elemental, crystallinity, composition and photoluminescence of the deposited Ga2 O3 

were characterized by FESEM, EDS, XRD, FTIR and PL respectively. After 

characterization, the electrochemically grown Ga2 O3 nanostructures on Si were 

nitrided in order to transform Ga2O3 into GaN. Finally, once again the 

morphological, elemental and crystallinity of the nitride samples were characterized 

by FESEM, EDS and XRD respectively to study the effect of ammoniating time and 

temperature.
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Gallium N itride Nanowires by N itridation of Electrochemically 
Grown Gallium Oxide on Silicon

Growth of Ga2O3 on Si substrate by electrochemical deposition 
technique and hydrothermal technique as comparison

Morphological, elemental, crystallinity, composition and 
photoluminescence characterization of Ga2O3 nanostructures using 

FESEM, EDS, XRD, FTIR and PL measurement

Nitridation process of electrochemically grown Ga2O3 nanostructures on 
Si substrate by single zone CVD furnace

Morphological, elemental and crystallinity characterization after 
nitridation of Ga2O3 using FESEM, EDS and XRD measurement

Figure 1.1 Research activities

1.6 Overview of Thesis O rganization

This thesis is organized into 6 chapters. Chapter 1 gives an overview of the 

research background and motivation of the study. The originality, objectives, scopes 

and research activities of the present work are also presented.

In chapter 2, an overview of the basic properties of Ga2 O3 and also GaN is 

provided. This chapter discusses a brief description of the method used to grow GaN 

and also nitridation of Ga2 O3 from past work. The potential application of Ga2 O3 and 

GaN are also discussed in this chapter.

In chapter 3, the experimental procedures and characterization techniques that 

have been used in this work to synthesize and characterize Ga2 O3 nanostructures by



8

electrochemical technique are described. The nitridation process of Ga2 O3 to 

transform Ga2O3 into GaN by CVD furnace is also described.

In chapter 4, the properties of the synthesized Ga2O3 by electrochemical 

deposition technique at different Ga2O3 molarities and pH value of the electrolyte are 

discussed. A basic study of the formation of Ga2 O3 as well as investigation on the 

surface morphology, elemental, crystallinity, composition and photoluminescence is 

performed in order to have an understanding of the formation of Ga2 O3 

nanostructures on Si substrate. The properties of the grown Ga2O3 by hydrothermal 

technique are compared. The possible growth mechanism and chemical reaction are 

discussed in details.

In chapter 5, the properties of the synthesized GaN through nitridation of 

Ga2O3 by a single zone CVD furnace is discussed. The nitridation time and 

temperatures are varied and the effect of the nitridation time and temperature are 

analyzed. The morphologies, elemental, and crystalline properties of the structures 

before and after nitridation are discussed in details. The possible growth mechanism 

and chemical reaction involved in this study are also explained in this chapter.

Finally, chapter 6 concludes the contributions of the present work and 

discusses future research direction.
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