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ABSTRACT 

 

 

 

 

An integrated process design and control (IPDC) methodology has been 

developed which is able to identify and obtain an optimal solution for the IPDC 

problem for chemical processes in an easy, simple and efficient way. However, the 

developed IPDC methodology does not consider any sustainability aspect in the 

analysis. This study aims to develop a framework of computer-aided sustainable 

integrated process design and control (SustainIPDC) for reactor systems. This new 

framework methodology was developed in order to ensure that the process is more 

economical, controllable as well as sustainable to meet the product quality 

specifications. The Sustain-IPDC problem for reactor systems, typically formulated 

as a generic optimization problem was solved by decomposing it into six hierarchical 

stages: (i) pre-analysis, (ii) design analysis, (iii) controller design analysis, (iv) 

economic analysis, (v) sustainability analysis, and (vi) final selection and 

verification. Using thermodynamics and process insights, a bounded search space 

was first identified. This feasible solution space was further reduced to satisfy the 

process design, controller design and economic constraints in stages 2, 3 and 4, 

respectively. The sustainability aspect was then analyzed in stage 5 to satisfy the 

sustainability constraints, until in the final stage all feasible solutions (candidates) 

were ordered according to the defined performance criteria (objective function). The 

final selected design was then verified through rigorous simulations or experiments. 

In the first stage, the concept of the attainable region (AR) was used to locate the 

optimal solution. The target for this optimal solution was defined and selected at the 

maximum point of the AR diagram. It is expected that the solution target will show 

higher value of the objective function, hence verifying the optimal solution for the 

SustainIPDC problem for reactor systems. In addition, the sustainability calculator 

(called SustainPlus
©
) was also developed in this study in which the simultaneous 

calculation of three sustainability indices (one-dimensional, two-dimensional, and 

three-dimensional) can be performed in one single analysis. Then, the developed 

methodology were verified by using two different case studies; (i) production of 

cyclohexanone in a continuous-stirred tank reactor system, and (ii) biomass 

production in two continuous bioreactor system. Based on two different case studies 

that have been performed, the results have shown that the optimal solution in terms 

of design, controller design, economic and sustainability is the best at the highest 

point of the AR diagram. It also shows that the proposed SustainIPDC methodology 

is able to find the optimal solution that satisfies design, controller, economics and 

sustainability criteria in an easy, efficient and systematic way. 
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ABSTRAK 

 

 

 

 

Kaedah proses rekabentuk dan kawalan bersepadu (IPDC) telah dihasilkan 

yang mana ianya mampu mengenalpasti penyelesaian yang optimum untuk masalah 

IPDC bagi proses kimia dengan mudah, cekap dan sistematik. Tetapi, kaedah IPDC 

yang dihasilkan tidak mengambilkira sebarang aspek kelestarian di dalam 

analisisnya. Kajian ini bertujuan untuk menghasilkan satu kaedah bantuan computer 

bagi proses rekabentuk dan kawalan bersepadu (menampungIPDC) bagi sistem 

reaktor. Kaedah sistematik ini dihasilkan bagi memastikan bahawa proses ini adalah 

lebih ekonomi, boleh dikawal dan mampan bagi memenuhi spesifikasi kualiti 

produk. Masalah menampungIPDC bagi system reaktor, biasanya dirumuskan 

sebagai masalah pengoptimuman generik yang diselesaikan dengan dibahagikan 

kepada enam peringkat: (i) pra-analisis, (ii) analisis rekabentuk, (iii) analisis 

rekabentuk pengawal, (iv) analisis ekonomi, (v) analisis kemampanan, dan (vi) 

pemilihan akhir dan pengesahan. Menggunakan termodinamik dan gambaran proses, 

ruang carian terbatas dikenalpasti. Ruang penyelesaian ini dikurangkan lagi untuk 

memenuhi kekangan rekabentuk proses, kawalan dan ekonomi di peringkat 2, 3 dan 

4. Aspek kelestarian kemudiannya dianalisis di peringkat 5 untuk memenuhi 

kekangan kemampanan, sehingga di peringkat akhir semua penyelesaian (calon) 

disusun mengikut kriteria prestasi tertentu (fungsi objektif). Rekabentuk terakhir 

yang dipilih kemudiannya disahkan melalui simulasi atau eksperimen. Di peringkat 

pertama, konsep rantau tercapai (AR) ini digunakan untuk mencari penyelesaian yang 

optimum dari segi keadaan operasi. Sasaran bagi penyelesaian optimum ini 

ditakrifkan dan dipilih pada titik maksimum rajah AR. Ia dijangka bahawa calon 

pada titik maksimum rajah ini akan menunjukkan nilai yang lebih tinggi, oleh itu 

pengesahan penyelesaian optimum bagi masalah menampungIPDC untuk sistem 

reaktor. Selain itu, kalkulator kemampanan (SustainPlus
©
) juga dibangunkan dalam 

kajian ini di mana pengiraan serentak tiga indeks kelestarian (satu-dimensi, dua-

dimensi dan tiga-dimensi) boleh dilakukan dalam satu analisis tunggal. Kemudian, 

kaedah ini diuji dengan menggunakan dua kes yang berbeza; (i) penghasilan 

sikloheksanon dalam sistem tangki reaktor pengacau berterusan, dan (ii) penghasilan 

biomass dalam dua sistem bioreaktor berterusan. Berdasarkan dua kajian kesini, 

keputusan menunjukkan bahawa penyelesaian optimum dari segi rekabentuk, 

rekabentuk pengawal, ekonomi dan kemampanan adalah yang terbaik pada titik 

tertinggi rajah AR. Ia menunjukkan bahawa kaedah menampungIPDC yang 

dicadangkan mampu untuk mencari penyelesaian optimum yang memenuhi 

rekabentuk, pengawal, ekonomi dan kemampanan kriteria dengan cara yang mudah, 

cekap dan sistematik. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Chemical processes have been traditionally designed by a sequential 

approach consisting of initial process design, which is based on steady state 

economic calculations followed by the synthesis of a controller structure that is 

generally based on heuristic controllability measures. Thus, the process design and 

process control aspects have been generally studied independently. This traditional 

sequential design approach is often inadequate since the process design can 

significantly affect the process control of the systems (Malcom et al., 2007). Another 

drawback has to do with how process design decisions influence the controllability 

of the process to assure that design decisions give the optimum economic and the 

best control performance, controller design issues need to be considered 

simultaneously with the process design issues (Miranda et al., 2008). The research 

area of combining process design and controller design considerations is referred 

here as integrated process design and controller design (IPDC). 

 

 

Integrated Process Design and Control (IPDC) methodology was developed 

which is able to identify and obtain an optimal solution for the IPDC problem for 
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chemical processes in an easy, simple and efficient way (Hamid, 2011). However, 

the developed methodology for the IPDC did not consider sustainability aspect in the 

early chemical processes design stage. Designing controllable and also sustainable 

process is one of the key challenges for sustainable development of chemical 

processes. Chemical process design can be further improved by including 

sustainability aspect within the developed IPDC method to ensure that the design is 

more cost efficient and controllable, as well as sustainable to meet product quality 

specifications. This can be achieved by extending the developed model-based IPDC 

method encompasses sustainability aspect.  

 

 

Sustainability is based on balancing three principal objectives: environmental 

protection, economic growth, and societal equity. Metrics and indicators are used to 

assess the sustainability performance of a process or a system, to evaluate the 

progress toward enhancing sustainability, and to assist decision makers in evaluating 

alternatives. There are one-dimensional (1D), two-dimensional (2D) and three-

dimensional (3D) sustainability indices that will be used in this study. In order to 

make it more easily in measuring the sustainability in chemical processes, a new 

computer-aided tool that combined all three dimension of sustainability index has 

been successfully developed. 

 

 

Solving IPDC problem together with the sustainability criteria may cause 

complexity in the optimization problem. To obtain solutions for this problem will 

require a huge computational effort which makes this approach impractical for 

solving real industrial problems. In order to overcome the complexity of the Sustain-

IPDC problem and obtain an achievable optimal solution, a decomposition approach 

is used in this study. The decomposition approach has been applied in managing and 

solving the complexity of different optimization problems in chemical engineering 

(Hamid, 2011). The basic idea is that in optimization problems with constraints, the 

search space is defined by the constraints within which all feasible solutions lie and 

the objective function helps to identify one or more of the optimal solutions. The 

constraint equations are solved in a pre-determined sequence such that after every 

sequential sub-problem, the search space for feasible solutions is reduced and a sub-
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set of decision variables are fixed. When all the constraints are satisfied, it remains to 

calculate the objective function for all the identified feasible solutions to locate the 

optimal solution. In this study, the decomposition solution strategy has been adopted 

to develop a new framework of model-based methodology for solving Sustain-IPDC 

problem. 

 

 

 

 

1.2 Problem Statement 

 

 

Previously, IPDC methodology was developed which is able to identify and 

obtain an optimal solution for the IPDC problem for reactor systems in an easy, 

simple and efficient way (Hamid, 2011). However, the developed methodology for 

the IPDC did not consider sustainability aspect. Designing controllable and also 

sustainable process is one of the key challenges for sustainable development of 

reactor systems since reactor is the hard part of the chemical design before any other 

parts of the design. Reactor system process design can be further improved by 

including sustainability aspect within the developed IPDC method to ensure that the 

design is more cost efficient and controllable, as well as sustainable to meet product 

quality specifications. This can be achieved by extending the developed model-based 

IPDC method for reactor systems encompass sustainability aspect. 

 

 

 

 

1.3 Objectives of the Study 

 

 

The objective for this study is to develop a new framework of model-based 

methodology, which is able to identify and obtain an optimal solution for the 

Sustain-IPDC problem for reactor systems.  
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1.4 Scope of the Study 

 

 

 In order to achieve the abovementioned objective, several scopes have been 

planned: 

 

1. Developing a new model-based methodology for Sustain-IPDC for reactor 

systems. 

2. Developing a sustainability calculator called SustainPlus
© 

for reactor systems 

that simultaneously calculate three sustainability indexes (1D, 2D, 3D) in one 

single analysis. 

3. Integrating different available tools in every single stage (such as Microsoft 

excel, Aspen HYSYS and MATLAB) in the proposed Sustain-IPDC 

methodology. 

4. Testing the performance of the proposed Sustain-IPDC methodology in 

solving complex reactor system problems. 

 

 

 

 

1.5 Significant of the Study 

 

 

The significant of this study is that the proposed methodology allows the 

process engineer in finding the optimal solution for a Sustain-IPDC problem for 

reactor systems in a systematic, efficient and fast. In addition, the proposed 

methodology can be used not only for industrial purpose but also for academic 

purpose. 
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1.6 Thesis Organization 

 

 

 The thesis is organized into six chapters which are (1) introduction, (2) 

literature review, (3) sustainable integrated process design and control methodology 

for reactor systems, (4) SustainPlus
©
: a software for calculating sustainability index 

of reactor systems, (5) result and discussion, and (6) conclusion and 

recommendation. In Chapter one, the background of research, problem statement, 

research objectives, research scopes, significant of the research are presented. Then, 

in Chapter two, the literature review on the previous research activities is discussed 

in more details, which includes the development of the IPDC methodology, 

sustainability indices that have been measured by the previous researchers and the 

IPDC methodology upgrading. The methodology development for the Sustain-IPDC 

is detailed out in Chapter three which consists of problem formulation and the 

decomposition-based solution strategy. In addition, the SustainPlus
©
 software, a 

computer-aided tool used to calculate the sustainability index is discussed in Chapter 

four, which includes the overview, framework, implementation and application of the 

tool. In Chapter five, there are two case studies are presented to test the performance 

of Sustain-IPDC methodology with the help of the developed SustainPlus
©
 tool; the 

design of the single reactor system and the retrofitting of two reactors system. 

Finally, the conclusion and recommendation of the research are presented in Chapter 

six.  
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