MODELING AND CONTROL OF VENTILATION AND HEATING SYSTEM USING NEURO-FUZZY INFERENCE SYSTEM

NUR QAMARINA BINTI ZAUDI

UNIVERSITI TEKNOLOGI MALAYSIA

MODELING AND CONTROL OF VENTILATION AND HEATING SYSTEM USING NEURO-FUZZY INFERENCE SYSTEM

NUR QAMARINA BINTI ZAUDI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical-Mechatronics and Automatic Control)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

This thesis is dedicated to my parents.

For their endless love, support and encouragement.

ACKNOWLEDGEMENT

My first thank you for my supervisor, Assoc. Prof. Dr. Norhaliza Abd. Wahab. This thesis would not have been possible without her valuable guidance. Most importantly, I want to thank to my family for their endless support throughout my whole study career.

ABSTRACT

Dealing with the nonlinearities and uncertainties in Ventilation and Heating System are the main challenges in developing a reliable model for the system. In this project, artificial neural network (ANN) modeling technique was used as it has demonstrated the capability of handling certain uncertainties. The laboratory scale ventilation and heating system, VVS-400 equipped with RTD temperature sensor and orifice plate as flow sensor is chosen as the case study. The input-output data of the system was collected experimentally in building ANN model for the plant. Large portion of the pre-treated data were used to train the ANN model. The remaining portion were used to test the generalization capabilities of the realized ANN model. The prediction performances of the model were evaluated using root-mean square error (RMSE) and correlation coefficient (R). A neuro-fuzzy controller was designed to control the air temperature of the system. The simulation studies were achieved through the use of MATLAB/Simulink software.

ABSTRAK

Berhubung dengan sistem tidak linear di dalam Sistem Ventilasi dan Pemanasan adalah cabaran utama untuk menghasilkan model untuk sistem tersebut. Dalam projek ini, teknik modeling Rangkaian Neural Buatan (ANN) telah digunakan kerana ia telah mendemontrasi keupayaan untuk mengendalikan ketidaksamaan. Sistem Ventilasi dan Pemanasan, VVS-400 berskala makmal dilengkapi dengan sensor suhu rintangan pengesan thermometer (RTD) dan sensor aliran udara plat orifis telah dipilih menjadi kes pembelajaran. Data input-output sistem tersebut telah dikumpulkan secara eksperimen untuk membina 'ANN' model untuk sistem tersebut. Sebahagian besar daripada data yg telah diproses telah digunakan untuk melatih model 'ANN'. Baki sebahagian data telah digunakan untuk menguji kebolehan generalisasi 'ANN' model tersebut. Ramalan prestasi model tersebut kemudian telah dianalisa menggunakan punca min kuasa dua (RMSE) dan pekali korelasi (R). Sistem kawalan 'Neuro-Fuzzy' telah direka untuk mengawal suhu sistem tersebut. Simulasi telah dicapai dengan menggunakan perisian MATLAB/Simulink.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	X
	LIST OF FIGURES	xi
	LIST OF ABBREVIATIONS	xiii
	LIST OF SYMBOLS	xv
	LIST OF APPENDICES	xvii
1	INTRODUCTION	1
	1.1 Project Background	1
	1.2 Problem Statement	2
	1.3 Project Objectives	2
	1.4 Scope of Work	3
	1.5 Thesis Structure	3
2	LITERATURE REVIEW	4
	2.1 Introduction	4
	2.2 System Description	4
	2.3 Case study of VVS-400	5
	2.4 System Identification	6

			viii
2.5	Fuzzy Logic		7
2.6	Artificial Neur	ral Network (ANN)	9
	2.6.1 ANN C	ontrol	10
	2.6.1.1	Control of Industrial Water	10
		Bath System	
	2.6.1.2	Control of Thermal Comfort	10
		Controller using Predicted	
		Mean Vote	
	2.6.1.3	Control of Compression	11
		Station of Large-scale	
		Helium Refrigerator	
	2.6.1.4	Control of Double-Variables	12
		Decoupling for MIMO	
		system	
	2.6.1.5	Control of Temperature	12
		Decoupling for Double-level	
		air flow field dynamic	
		vacuum system	
	2.6.1.6	Control of Direct Expansion	13
		of air-conditioning system	
	2.6.1.7	Control of Roller-kiln	13
		Process	
2.7	Neuro-Fuzzy	Model	17
	2.7.1 Zero O	rder Neuro-Fuzzy Model	17
	2.7.2 First O	rder Neuro-Fuzzy Model	18
	2.7.3 Neuro-	Fuzzy Modeling	19
	2.7.4 Neuro-	Fuzzy Control	25
		* 7	•
	THODOLOG		30
3.1	Overview of	Step Procedure	30

•	
1	v

		3.1.1	Experiment Design and	32
			Experimental Setup	
		3.1.2	Model Identification using Matlab	35
		3.1.3	Neuro-Fuzzy Modeling	36
		3.1.4	Feed-forward Neural Network	44
			Model	
		3.1.5	Controller Design	46
		3.1.6	Controller in VVS-400 Ventilation	48
			and Heating System	
		3.1.7	Real-time Windows Target (RTWT)	49
			toolbox	
4	RES	SULT A	AND DISCUSSION	50
	4.1	Syste	m Modelling	50
	4.2	Open	Loop Identification	50
		4.2.1	Flow Data Collection	52
		4.2.2	Temperature Data Collection	53
	4.3	Neuro	-Fuzzy and Feed-forward Neural	54
		Netwo	ork Modelling	
	4.4	Conti	roller Design	62
	4.5	Real-	time Control	65
5	CO	NCLU	SION AND RECOMMENDATION	68
	5.1	Concl	usion	68
	5.2	Future	e Works	69
REFERENCES				70
Appendices A-C				74

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Fuzzy Logic Control	9
2.2	ANN Control	14
2.3	Neuro-Fuzzy Modeling	22
2.4	Neuro-Fuzzy Control Application	27
4.1	Input Output Data for Flow from	51
4.2	Experiment Input Output Data for Temperature from Experiment	51
4.3	Temperature Model Validation	60
4.4	Flow Model Validation	61

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	VVS-400 Heating and Ventilation System	5
2.2	Structure of Zero Order Neuro-Fuzzy model	18
2.3	Structure of First Order Neuro-Fuzzy model	19
3.1	Algorithm for system modelling	31
3.2	Heating and Ventilation System plant VVS-400	32
	connection	
3.3	Open loop experiment Simulink for flow and	33
	temperature	
3.4 (a)	Load Vane Fully open (100%), high flow	34
3.4 (b)	Load Vane 50% open, medium flow	34
3.4 (c)	Load Vane Fully Close, low Flow	34
3.5	Neuro-Fuzzy modeling procedure flowchart	35
3.6	Training Data loaded from workspace GUI	36
3.7	Training Data process with 100 epoch GUI	37
3.8	Training FIS output Plot GUI	38
3.9	Testing FIS Output Plot GUI	38
3.10	Neuro-Fuzzy Model Structure GUI	39
3.11	Set of Rules for Training ANFIS model	40
	(Temperature) GUI	
3.12	Surface Error GUI	40
3.13	Training Data process with 100 epoch GUI	41
3.14	Training Data and FIS output for low flow	42
	plotting	
3.15	Testing Data and FIS output for low flow plotting	42
	GUI	

3.16	Set of Rules for Training Neuro-Fuzzy model	43
	(Flow) GUI	
3.17	Surface Error GUI	43
3.18	Neural Time Series tool input and output data	44
	training GUI	
3.19	Neural Time Series tool input and output data	45
	training result GUI	
3.20	Controller Design flowchart	46
3.21	Direct Modeling	47
3.22	Inverse Modeling	47
3.23	Internal Model Control Structure	47
3.24	Closed-loop real time controller	48
4.1	Low Flow at Fully closed load vane	52
4.2	High Temperature at Fully Closed	53
4.3	Output and Actual plot for Low Temperature	54
	Model	
4.4	Output and Actual plot for High Flow Model	55
4.5	Output and Actual plot for Medium Temperature	55
	Model	
4.6	Output and Actual plot for Medium Flow Model	56
4.7	Output and Actual plot for High Temperature	56
	Model	
4.8	Output and Actual plot for Low Flow Model	57
4.9	Neuro-Fuzzy Model for Temperature	57
4.10	FFNN Model for Temperature	58
4.11	Neuro-Fuzzy Model for Flow	58
4.12	Feed Forward Neural Network	59
4.13	Simulink block of the system and Internal Model	62
	Neuro-Fuzzy Controller	
4.14	Temperature process response from simulation	63
	with Neuro-Fuzzy controller (High Temperature)	
4.15	Linear control surface of Neuro-Fuzzy controller	63

4.16	Temperature process response from simulation	64
	with Neuro-Fuzzy controller (Medium	
	Temperature)	
4.17	Temperature process response from simulation	64
	with Neuro-Fuzzy controller (Low Temperature)	
4.18	Simulink block diagram of real implementation	65
	with Neuro-Fuzzy	
4.19	Temperature Process response with offline and	66
	online Neuro-Fuzzy controller (Low	
	Temperature)	
4.20	Temperature Process response with offline and	67
	online Neuro-Fuzzy controller (Medium	
	Temperature)	
4.21	Temperature Process response with offline and	67
	online Neuro-Fuzzy controller (High	
	Temperature)	

LIST OF ABBREVIATIONS

ANN - Artificial Neural Network

ANFIS - Adaptive Neuro-Fuzzy Inference System

BP - Backpropagation

CANFIS - Coactive Adaptive Neuro-Fuzzy Inference System

DAQ - Data Acquisition

DAFDV - Double-level air flow field dynamic vacuum

DX A/C - Direct Expansion Air Conditioner

FFNN - Feedforward Neural Network

FIS - Fuzzy Inference System

FLC - Fuzzy Logic Controller

GA - Genetic Algorithm

HVAC - Heating Ventilation Air Conditioner

I/O - Input-Output

LSE - Linear Square Error

MIMO - Multiple Input Multiple Output

NI - National Instrument

PID - Proportional Integral Derivative

PMV - Predicted Mean Vote

PRBS - Pseudo-Random Binary Sequence

PSO - Particle Swarm Optimization

R - Correlation Cofficient

RMSE - Root Mean Square Error

RTWT - Real Time Windows Target

RTD - Resistance Thermo Detector

SIFLC - Single-Input Fuzzy Logic Controller

TRIAC - Triode for Alternating Current

TS - Takagi-Sugeno

xvi

LIST OF SYMBOLS

γ -	Conjuctive	form antecedent
-----	------------	-----------------

 Σ - Fuzzy mean operator

Π - Antecedent connective

 σ - Basis Function Parameter

 β - Degree of fulfillment

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Gannt Chart Project 1	70
В	Gannt Chart Project 2	71
С	Neuro-fuzzy model code	72

CHAPTER 1

INTRODUCTION

1.1 Project Background

Generally, heaters are appliances which function to generate heat. The heat can be transferred by either convection, conduction or radiation. A heating system is a mechanism for maintaining temperatures at an acceptable level by using thermal energy within a home, office, or other dwelling. Ventilation is the process of changing or replacing air in any space to provide high indoor air quality to control temperature. Furthermore, heating and ventilation elements are combined to form heating and ventilation system which are also widely used in industries to control air temperature and flow of processes taking part in the industry. In industries which involve many processes where high heat is presence, ventilation is needed in order to regulate the temperature. Due to this matter, controlling of air flow and air temperature is very important.

In developing a reliable model for ventilation and heating system the main challenges are dealing with nonlinearities and uncertainties as Multiple Input-Multiple Output (MIMO) systems often show dynamic behavior of processes. In order to solve this matter, a system identification technique based on neuro-fuzzy system which demonstrate efficiency and the capability of enduring uncertainties must be applied in order to design a controller for the system.

1.2 Problem Statement

In developing a reliable model for ventilation and heating system the main challenges are dealing with nonlinearities and uncertainties of the system. For example, MIMO systems often show dynamic behaviour of processes inside the system.

This may include temperature and flow processes. In order to solve this matter, modeling technique which consider the nonlinearities of the system must be applied and a controller which demonstrate efficiency and the capability of enduring nonlinearities and uncertainties must be designed.

1.3 Project Objective

- 1. To develop ANN model that describes the dynamic behavior of VVS-400 using system identification approach.
- 2. To design a controller using neuro-fuzzy method
- 3. To test the performance of the controller design into VVS-400.

1.4 Scope of Work

Initially, the characteristics and dynamics behavior of pilot scale heating and ventilation system, VVS-400 are studied. Then, experimental set-up and data collection from the plant model will be done. The heating and ventilation system will be modeled using system identification technique. In addition, the prediction performances of the model will be evaluated. The neuro-fuzzy controller will be designed based on verified model to control the air temperature and also air flow inside the system.

1.5 Thesis Structure

This thesis is organized in five Chapters. The first chapter gives an overview of the project that gives the introduction of heating and ventilation system, nonlinearities and the modeling and control approach proposed.

Chapter 2 covers literature review on related works, system description, and system identification and controller design.

Chapter 3 the flow of methodology and description of each procedure taken to complete the project.

Chapter 4 mainly discuss about the results of this project. Both results for neural-network and neuro-fuzzy modeling were discussed in this chapter. Furthermore, results for developed neuro-fuzzy controller were also discussed.

Chapter 5 includes the conclusion and summarization of the thesis and recommendation for future works.

REFERENCES

- Bai, E. W., (2001). A Blind Approach to the Hammerstein–Wiener Model Identification. Automatica 38 (2002,) pp. 967 979 (2001).
- Baoxia, Deyuan, (2011). Design and Application of Decoupled Controller Based on the BP Neural Network, Chinese Control and Decision Conference (CCDC)Abe, M. (2001). The role of municipalities in housing policy.
- Ghaffari, A., Chaibakhsh A., and Shahhoseini S., (2013). Neuro-Fuzzy Modeling of Heat Recovery Steam Generator" *International Journal of Machine Learning and Computing*, Vol. 3, No. 1.
- Gupta, S., Rajaji, L. Kalika S., (2012). ANFIS Based Design of Controller for Superheated Steam Temperature Non Linear Control Process. *International Journal of Engineering and Innovative Technology (IJEIT) Volume 2, Issue 6, December 2012.*
- Gupta, A., Asha Rani, Singh V., (2013). Control of Distillation Process Using Neuro-Fuzzy Technique, *International Journal of Electrical, Electronics and Data Communication, ISSN:* 2320-2084 Volume-1, Issue-9, Nov-2013.
- Haslizamri, (2013). Nonlinear System Identification: Comparison between PRBS and Random Gaussian Perturbation on Steam Distillation Pilot Plant.pp.269-274,2013.

- Haslizamri, Rahiman M.H, (2014). Black-Box Modelling of Steam Distillation Pilot Scale using M-Level PRS Perturbation.
- Homod, R.Z., Salleh K., M. Sahari, H. A. F. Almurib, and F. Hafiz, (2012). Gradient auto-tuned Takagi Sugeno Fuzzy Forward control of a HVAC system using predicted mean vote index, vol. 49, pp. 254–267, 2012.
- Hosoz, M., Ertunc M.H, Bulgurcu, (2011). An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower Expert Systems with Applications, 38 (2011) 14148–14155.
- Jang, J-SR., (1993). ANFIS:Adaptive-network-based fuzzy inference system. *IEEE Transactions on Systems, Man and Cybernetics* 1993;23:665–85.
- Jinyang, Xiaofeng M. (2013). Temperature decoupling control of double-level air flow field dynamic vacuum system based on neural network and prediction principle.

 Engineering Applications of Artificial Intelligence 26 (2013) 1237–1245.
- Kamar, H. Ahmad R, N.B. Kamsah, Ahmad Faiz Mohamad Mustafa, (2013). Artificial neural networks for automotive air-conditioning systems performance prediction. *Applied Thermal Engineering* 50 (2013) 63e70.
- Li, S., Ren S., and Wang X., (2013). HVAC room temperature prediction control based on neural network model. Fifth Conference on Measuring Technology and Mechatronics Automation.
- Li, Y., Cai, C., Lee, K. M., & Teng, F. (2013). A Novel Cascade Temperature Control System for a High-Speed Heat-Airflow Wind Tunnel. *Mechatronics*, *IEEE/ASME Transactions on*, *18*(4), 1310-1319.
- Mote, T.P., Lokhande D., (2012). Temperature Control System Using ANFIS

 International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-2, Issue-1.

- Nan Peng, Lianyou X., Linglong L., (2014). Study of Multivariable PID Neural Network Control for the Compression Station of Large-scale Helium Refrigerator, *Advanced Materials Research Vols.* 960-961 (2014) pp 631-634
- Parkale, Y. (2012). Comparison of ANN Controller and PID Controller for Industrial Water Bath Temperature Control System using MATLAB Environment. *International Journal of Computer Applications* (0975 8887) *Volume 53–No.2*.
- Rahmat, M. F., Subha, N. M., Ishaq, K. M., & Wahab, N. A. (2009). Modeling and controller design for the VVS-400 pilot scale heating and ventilation system. *International journal on smart sensing and intelligent systems*, 2(4), 579-601.
- Shahbazian, M., Jazayerirad H., Ebnali M. (2014). ANFIS Based Identification and Control of Distillation Process. *Journal of Automation and Control*, 2014, Vol. 2, No. 2, 49-56
- Shahgholian, G., Movahedi A., (2011). Modeling and Controller Design Using ANFIS Method for Non-Linear Liquid Level System *International Journal of Information and Electronics Engineering*, Vol. 1, No. 3, November 2011
- Solatian, P., Hamidreza S., Abbasi, Fereidoon Shabaninia, (2012). Simulation Study of Flow Control Based On PID ANFIS Controller for Non-Linear Process Plants.

 American Journal of Intelligent Systems, 2(5):104-110 DOI: 10.5923/j.ajis.20120205.04.
- Vieira, J.A.B ,Mota A. M., (2013), Modeling and Control of a water gas heater with Neuro Fuzzy Techniques.

- Wan, J.Q M.-Z. Huang,b,d, Y.-W. Ma,b W. J. Guo,b Y. Wang,b and H.-P. Zhangd (2010). Control of the Coagulation Process in a Paper-mill Wastewater Treatment Process Using a Fuzzy Neural. *Chem. Biochem. Eng. Q.* 24 (4) 425–435 (2010).
- Yassin, I., (2014). Nonlinear Auto-Regressive Model structure Selection Using Binary
 Particle Swarm Optimization Algorithm. Phd Dissertation, Universiti
 Teknologi MARA Malaysia, 2014.
- Yassin, I. M., Taib M. N., Hassan H.A, Zabidi A., and N. M. Tahir, (2010). Heat exchanger modeling using NARX model with binary PSO-based structure selection method. *Computer Applications and Industrial Electronics* (ICCAIE), 2010 International Conference, pp. 368-373.