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ABSTRACT 

 

 

 

 

This thesis presents the energy management of battery, ultracapacitor (UC) 

and photovoltaic (PV) power system for Electric Vehicles (EV). The proposed 

energy sharing control, in which each energy source is connected in parallel to the 

direct current (DC) bus via a power electronic converter. All energy sources are 

studied to investigate the different supply characteristics in order to avoid detrimental 

effects on the energy sources. A total of four control loops are employed in the 

supervisory system in order to regulate the DC bus voltage. The Proportional-

Integral (PI) compensator is used in each control loop to simplify the overall system 

design. In this work, the Generalized Predictive Controller (GPC) is proposed to 

control the multiple energy system. The simulation results are then compared with 

the conventional PI control technique. The energy management strategy is designed 

according to typical vehicle operation modes based on the state-of-charge of energy 

storage devices and the total output power. The performance of the EV’s energy 

management using both the PI controller and the GPC is simulated using resistive 

load and a DC motor drive system through MATLAB/Simulink simulation package. 

Then, the feasibility of the control system is validated through laboratory scale 

experimental tests. In the experiment, the dSPACE DS1104 is used to implement PI 

controller into hardware. The responses of the DC bus are analyzed based on 

different vehicle operation modes. Results show the proposed parallel energy-sharing 

control system either in simulation or hardware experiment is able to provide a 

dynamic response, avoid battery being overstressed by current, the UC charged 

according to vehicle speed, and the PV tracked the maximum power. However, 

between the discrete PI and GPC control, the GPC is slightly better than PI control.   
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ABSTRAK 

 

 

 

Tesis ini membentangkan kawalan tenaga perkongsian antara bateri, ultra-

kapasitor (UC) dan fotovoltaik (PV) untuk Kenderaan Electrik (EV). Dalam kawalan 

perkongsian tenaga yang dicadangkan, setiap sumber tenaga akan disambung secara 

selari kepada bas arus terus (DC) melalui penukar elektronik kuasa. Untuk 

memastikan prestasi kenderaan, setiap sumber tenaga akan dikaji untuk menyiasat 

sifat-sifatnya bagi mengelakkan kesan memudaratkan kepada sumber.  Sebanyak 

empat gelung kawalan akan digunakan dalam tenaga kawalan kenderaan elektrik 

untuk mengawal voltan bas arus terus. Untuk memudahkan proses rekabentuk, 

kaedah Perkamiran-Berkadaran (PI) telah digunakan dalam setiap gelung kawalan. 

Kemudian, Kawalan Ramalan Model (GPC) dibangunkan untuk menggantikan 

kawalan PI. Seterusnya, keputusan simulasi dibandingkan dengan keputusan simulasi 

yang menggunakan kawalan PI. Strategi pengurusan sumber tenaga dibangunkan 

mengikut mod operasi kenderaan yang berdasarkan paras voltan setiap sumber 

tenaga dan jumlah kuasa yang diperlukan. Dengan menggunakan 

MATLAB/Simulink, prestasi pengurusan tenaga EV yang menggunakan kawalan PI 

and GPC dikaji. Dalam ujikaji simulasi ini, beban rintangan dan sistem pemacu 

motor DC digunakan sebagai beban ujian. Kemudian, ujian makmal dengan 

eksperimen skala digunakan untuk mengesahkan sistem kawalan tersebut. Dalam 

ujikaji sistem kawalan ini, dSPACE DS1104 telah digunakan untuk melaksanakan 

pengawal PI ke dalam perkakasan. Seterusnya, sambutan bas DC dianalisis apabila 

operasi kenderaan mod berubah. Keputusan yang diperolehi dalam 

MATLAB/Simulink atau ujikaji yang dijalankan menunjukkan kawalan perkongsian 

tenaga dalam kerja ini mampu mengelakkan bateri daripada tekanan arus elektrik, 

mengecas UC mengikut kelajuan kenderaan, PV dapat mengeluarkan kuasa 

maksimum dan berjaya memberi tindak balas fana apabila operasi kenderaan mod 

berubah. Tetapi di antara kawalan PI and GPC, GPC memberi prestasi yang lebih 

baik daripada PI.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Worldwide emission of greenhouse gases (GHGs) has risen steeply since the 

industrial revolution from the 18
th

 to the 19th with the largest increase coming after 

1945. Human activities such as transportation, electricity, industry, agriculture and 

others are the main contribution to the GHGs emissions on the earth. From statistical 

database of the U.S. Energy Information Administration (EIA), transportations 

consume almost 27% of the total energy consumption in the world and 33.7% of the 

GHGs emission in 2012, as shown Figure 1.1 and Figure 1.2 [1-4].  

 

 

At the beginning, human use their own strength or animal to transport their 

goods. Then, transportations start to evolve to steam powered, electric powered and 

today's internal combustion engine (ICE). Almost 200 year after human discovered 

the abandon crude oil on earth, now, fossil fuels are the main energy source for 

propulsion. Therefore, all automotive are designed based on fossil fuel [5, 6]. 

However, with the drastic growth of power electronic, energy storage devices 

become cost-effective and it has speed up the electric vehicle (EV) feasibility. 
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Figure 1.1 Energy consumption (Quadrillion BTU) based on different end-users [1, 

4]. 

 

 

Figure 1.2 The energy-related carbon dioxide emissions (million metric tons CO2 

equivalent) based on different end-users [1, 4]. 

 

 

From the engineering point of view, EV acquires energy conversion 

efficiency far higher than conventional automotive vehicle or ICE vehicle. According 

to the U.S. Department of Energy (USDE) in the year of 2012, the highest energy 

0

50

100

150

200

250

2005 2006 2007 2008 2009 2010 2011 2012

Year 

Residential
Sector

Commercial
Sector

Energy consumption (quadrillion BTU) 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2009 2010 2011 2012

Year 

Residential Sector

Commercial
Sector

Energy consumption (quadrillion BTU) 
 



3 

 

conversion efficiency of ICE vehicle can achieve is only around 15%. In other word, 

only 15% of total energy contain in fuel is effectively converted to run a car and its 

other accessories, a major percentage of the fuel is dissipated into heat during 

combustion [7]. The total energy consumption of the typical ICE vehicle is shown in 

Figure 1.3 [1, 4]. Another weakness of ICE vehicle is the need of more frequent 

maintenance than EV. However, as shown in Figure 1.4, EV consumes 

approximately 81.3% of the energy stored in the energy storage devices to propel the 

EV. The EV overall operational efficiency can reach up to 67.9% which is around 

four times more efficient than ICE propelled vehicles [8]. Today, EVs have an 

average of (7-13 km) range per kWh of stored electricity [9].  

 

Petrol Tank Drivetrain
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10%
Friction 

Water pump

40   70%
Thermal energy to 
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Figure 1.3 The typical energy flow of conventional internal combustion 

engine vehicle [1, 4]. 
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Figure 1.4 EV operating Energy Flow and Efficiency Diagram [1, 4]. 
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Currently, EVs start to get more attention in research and industrial. EVs 

become the focus to all automobile manufacture for their next version of vehicle. For 

all automaker, the common challenges of EV manufacturing are the high cost of its 

component and the short travel distance. The Energy Storage System (ESS) such as 

battery has contributed more than half of the EV price. ICE vehicle in full tank petrol 

can travel 4 times of single full charge battery of typical EV [10].in order to make 

EV comparable with the conventional ICE vehicle, the total cost expensed in EV's 

service life needs to be lower than the conventional ICE vehicle. Therefore, the 

major focus in the research of EV nowadays is to prolong the battery life.  

 

 

Utilizing battery bank in automobile environment increases the difficulty of 

energy management because vehicle is a dynamic load. Battery’s life in automobile 

tends to degrade faster if current overstress during charging/discharging [1, 4]. Many 

research done and proposed combination of battery with  some high power devices 

such as the Ultracapacitor (UC) and Flywheel to share and even serve high power 

charging and discharging for EV [11-15]. Flywheel-based Kinetic Energy Recovery 

System (KERS) currently is being used in Formula One racing car where there is the 

need to accelerate immediately. Power capacity of the KERS units can be ranged 

from 60kW to 120kW. Most of the automobile manufacture already implemented 

this technology to their car such as Mazda used i-ELOOP, Porche 918 and etc. [16].  

 

 

In the emerging solar industry, photovoltaic has gone into automobile 

application in order to obtain a sustainable and environment friendly vehicle. Instead 

of installing PV system as roof at parking lots, solar panel is installed on the roof on 

vehicle so called solar panel-embedded roofs. Toyota Prius is the sole vehicles to 

implement solar panel on its roof. However, the solar panel only serves as powers 

climate control system in the cabin. Averagely, the space on top of the vehicle is 

around 16 square feet (1.486 m
2
). The space is too small to allow the battery to be 

fully charged over the course of a day. Instead, at least a week is required. The Ford 

C-MAX Solar Energi car is incorporate with transparent canopy magnifier on 

parking lot. This will generate 8 times more energy from the sun and use six or seven 
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hours charging time. Therefore, PV is still considered unpractical in passenger 

vehicle [17].  

 

 

When EV comes to Hybridization of Energy Storage System (HESS), EV 

energy management plays an important role in order to distribute the required power 

to main ESS, auxiliary ESS and load. In short, the combination of ESS or 

hybridization of energy source has to be made carefully.  Secondly, a suitable energy 

management method is crucial in order to extend the battery life, since battery is the 

main source and main cost of the EV.  

 

 

 

 

1.2 Objectives 

 

 

The main purpose of the research is to develop an unprecedented parallel energy-

sharing control system for battery based hybrid source system. Ultracapacitor (UC) 

and photovoltaic (PV) module is used as auxiliary energy sources in this research. In 

order to supply EV propulsion system, the DC energy source from batteries, UC and 

PV work closely with each other to regulate the output bus voltage. The objectives of 

this research are: 

 

1. To model the power converter of EV energy management using the 

proportional-integral (PI) controller and Generalized Predictive Control (GPC). 

2. To simulate the energy management algorithm for parallel energy-sharing 

utilizing battery, UC, and PV in resistive load and DC motor drive system. 

3. To compare and analyze the energy management system performance between 

PI controller and the GPC using simulation approach only. 

4. To verify experimentally the multiple energy management system using PI 

controller only. 
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1.3 Problem Statement 

 

 

The price of crude oil has risen from as low as USD 2 per barrel to as high as 

USD 108 per barrel in 2014 [18]. This situation gave the disadvantage to 

conventional gasoline vehicle to maintain its existent in future generation. In energy 

transition like this, EV gains the advantage to enter automobile industry. However, 

currently half of the EV price is from its energy storage device alone. Reducing 

battery capacity is able to reduce the total price of the EV but it also reduces the 

vehicle's performance and the travel distance. Hence, hybridization of energy storage 

is a promising solution to above mentioned issues. One of the disadvantages of 

battery is its low power density. So, battery is not allowed to be overstressed on its 

current during charging/discharging, because this would reduce the battery's life 

cycle. To protect the battery from being damaged, the hybridization architecture and 

suitable energy management is the concern during the predesigned stage.  

 

 

Proportional-integral-derivative (PID) control is the typically used conventional 

compensator in power converters. PID cannot satisfy the requirement of the EV 

energy management control because of vehicle's fast dynamic response. Many 

modern high-performance control techniques, such as adaptive control, fuzzy 

control, artificial neural network and expert system should be used in the EV's 

controller. In this research, a new model predictive control (MPC) is chosen to 

control the multiple energy management to investigate the response of the current 

control. It is expected to achieve smooth and stable current output at the dc bus of the 

multiple energy sources by using the proposed control technique.  

 

 

 

 

 

 

 

 



7 

 

1.4 Scope of Research 

 

 

This research focuses on the controller design and energy management for the 

battery-UC-PV hybrid system. The optimal energy source capacity and supervisory 

vehicle control, optimal hybridization degree design, design of inverter and electric 

motor propulsion are not the scope of this research. Therefore, hybridization degree 

is based on the energy source that is available in the laboratory. The energy 

management of three parallel energy sources in EV is designed to meet the following 

requirements: 

 

1. The ability of battery, UC and PV to deliver optimal power to the load 

simultaneously or individually 

2. The capability of battery and UC to compensate each other when peak load or 

peak regeneration is needed, providing that 

a) peak power overstress in battery is avoided 

b) maintain UC's optimal energy level in every mode of powering 

3. The competency of PV to provide optimal power to charge the battery and 

UC at any time when sunlight is accessible 

 

The proposed control system is simulated in Matlab/Simulink environment and the 

feasibility of the proposed solution is closely examined through experiments.  

 

 

 

 

1.5 Methodology 

 

 

First, literature review on power electronic converter topology, Hybridization 

of Energy Storage System (HESS), Proportional-Integral-Derivative (PID) control 

loop, Generalized Predictive Control (GPC) algorithm, PV Maximum Power Point 

Tracking (MPPT) and energy management algorithm are studied. All literature 

articles are obtained from conference papers, journal papers, online articles, books or 
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electronic book and reading material from library. This helps to strengthen the 

fundamental understanding of the energy management techniques, power converter 

topologies with its control, power tracking algorithms and energy storage systems.  

Next, the power stage design and power electronic components optimization will be 

carried out.  A bidirectional DC-DC converter will be designed and simulated using 

MATLAB/Simulink software. The input voltage of the converter is 48 V and the 

output voltage bus is 80 V. All components are design based on the converter 

operating range as in practical implementation.  This is followed by the simulation of 

the Energy Storage System (ESS) which include the UC, lead acid battery and PV, 

module in MATLAB/Simulink. The Bidirectional DC/DC converter and the boost 

converter are designed using the average model method. After obtaining the 

component parameter values from the power stage design, those parameters will be 

verified through simulation. Then, the output responses of the ESS and also the 

power converters are studied.   

 

 

In the design stage, the power converter’s loop compensator is obtained. 

From the readily available boost converter’s transfer function, the proportional-

integral (PI) inner current control loop and outer voltage control loop of converter are 

derived. Through MATLAB/Simulink environment, the PI controller's parameter,    

and     are obtained according to the hardware requirement. After that, the proposed 

MPC is designed and simulated to compare the system's response with the PI 

controller. Next, PV Maximum Power Point Tracking (MPPT) algorithm is 

simulated to ensure that the PV is able to produce the optimal power supply at all 

weather conditions. Then, the simulation of parallel combined ESS integrated with 

power converter is made.  The response of the vehicle is emulated through 

combination of resistive load. For acceleration mode, resistive load will be stepped 

down by a switch. Similarly, the resistive load will be stepped up by the switch to 

emulate the braking mode. For coasting mode and parking mode, a constant load and 

no load will be used respectively. Next, the resistive load is replaced by a DC motor 

drive system in order to test both charging and discharging responses of each energy 

sources in the proposed energy management algorithm.  
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After completing all simulations, the experimental hardware will be 

implemented to test the studied energy management with PI control. The dSPACE 

RTI1104 as Real Time Interface (RTI) is used to control experiment hardware 

through MATLAB/Simulink environment. Hardware implementation consist of 

ESSs, power converters, gate driver circuit, voltage transducer, current transducer, 

load circuit and protection circuit. Finally, the voltage output and the current output 

response of the experimental hardware testing can be observed through oscilloscope 

or Control Desk which is the dSPACE experiment software for electronic control 

unit (ECU) development. The results of the experiment will be analyzed.  

 

 

 

 

1.6 Outline of Thesis 

 

 

This thesis consists of six chapters that are organized and described as 

follows: 

 

 

Chapter 1 describes the background of transportation role on environment 

impact and comparison between conventional ICE vehicle and EV. The chapter also 

discusses the potential problems faced by EV energy management system, the 

objectives of the thesis, the scope of the thesis and the methodology used. 

 

 

Chapter 2 presents types of DC/DC power electronic topologies for EV 

application. Some reviews on converter’s characteristic are explained in this section. 

In addition to that, the way of hybridization ESS in EV application is reviewed too. 

The types of energy management algorithm and control in EV and PV are also 

discussed. The controls of EV’s energy management are differentiated into two 

categories. They are high level supervisory control and low level component control. 

Then, power converter control methods through proportional-integral (PI) and model 
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predictive control (MPC) are review in this chapter. The MPPT algorithm on PV is 

reviewed last.  

 

 

Chapter 3 details the power stage design which considering all vehicle’s 

operating conditions. The calculated value of output capacitor, inductor, and system 

voltage are reported in this chapter. The optimized calculation of components in 

small scale EV is described. The ESS which consists of battery, UC and PV is 

modeled in this chapter. In addition, the boost converter modeling and bidirectional 

DC/DC converter modeling is also explained. Based on the modeling, the parameters 

loop compensator of the PI controller and GPC algorithm are designed. Then, perturb 

and observe (P&O) MPPT algorithm is simulated for the PV.  

 

 

Chapter 4 discusses system simulation of energy management through 

continuous PI control, discrete PI control and GPC algorithm. This includes 

simulation results and evaluation of the performances on resistive load and DC motor 

drive system. 

 

 

Chapter 5 covers all the experimental set-up. The power circuit and gate 

drivers are briefly explained in this chapter. The implementation of the proposed 

system using DS1104 DSP is also outlined. Hardware result of discrete PI control is 

presented here. Discussions and analysis of the results are also presented.  

 

 

Chapter 6 draws the conclusion for the thesis and highlights the academic 

contributions obtained throughout this research. Suggestions for possibility of future 

work in this area of study are outlined.    
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