
i

DESIGN OF THE STREAMING PROCESSOR ARCHITECTURE FOR

MICROKERNEL CONTROLLER AND ALU

NUHAIRI BIN ANUAR

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical – Computer and Microelectronic Systems)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JUNE 2015

iii

Specially dedicated to my wife, Emmy, my little boy, Umar, and my mother, Azizah.

iv

ACKNOWLEDGEMENT

I am grateful to Allah for good health and wellbeing that were necessary in

completing this project. I would like to give a special thanks to Prof. Dr. Mohamed

Khalil bin Haji Mohd Hani for supervising me on this project. His input and directions

since the inception greatly helped the outcome of the project. I also like to wish sincere

thanks to Dr. Muhammad Nadzir Marsono, Dr. Rabia Bakhteri, and Dr. Usman Ullah

Sheikh for the advised and feedback given on the project. I also would like to thank

Ngo, Wai Loon for spending quality time with me discussing about the architecture of

the Stream Processor. Last, but not least, I would like to thank my wife, Ermi Lihan

for the support and understanding during the completion of the project.

v

ABSTRACT

Media application such as 3D graphic processing, image processing, video

decode and encode requires high rates of arithmetic operation per second. As an

outcome of a decade long research, Stream Processor architecture, which is designed

to exploit the characteristic of media processing was proposed. A few architectures of

stream processor had been proposed and among the popular streaming processor

architecture was Imagine Stream Processor. This project is focusing on implementing

Imagine-based stream processor architecture on Altera Cyclone IV GX FPGA

specifically for ALU Clusters and Microkernel Controller modules. This project report

presents the literature reviews of books, theses and papers regarding stream processor

architecture and its related use cases. This report also documents the complete project

methodology taken in order to design a stream processor on the FPGA where the

design of the Stream Processor is using RTL design methodology and System Verilog

Language. This report also detailed the architectural design of the stream processor in

Chapter 3. Furthermore, result and discussion of the experimental work involve in this

project also reported in Chapter 4. The project report concluded that an FPGA-based

stream processor is successfully designed and tested with specific image processing

use cases. This project report also described possible enhancements possible on the

stream processor design.

vi

ABSTRAK

Aplikasi media seperti pemprosesan grafik tiga dimensi, pemprosesan imej,

penyahkodan dan pengkodan video memerlukan kadar operasi aritmetik persaat yang

tinggi. Hasil daripada penyelidikan lebih satu dekad, Pemproses Aliran yang direka

untuk mengekploitasi ciri-ciri pemprosesan media, telah dicadangkan. Antara

beberapa reka bentuk Pemproses Aliran sudah dicadangkan, reka bentuk yang agak

dikenali adalah Pemproses Aliran Imagine. Projek ini lebih fokus kepada mencipta

Pemproses Aliran berasaskan seni reka Imagine di dalam Altera Cyclone IV GX

FPGA terutamanya modul Kluster ALU dan Pengawal Mikrokernel. Laporan projek

ini mempersembahkan kajian penulisan tentang buku-buku, tesis-tesis, dan kertas

kerja berkenaan seni reka Pemproses Aliran dan pengunaannya. Laporan ini juga

melaporkan methodologi penuh yang digunakan untuk mereka satu reka bentuk

Pemproses Aliran di dalam satu FPGA, dimana rekaan RTL dan Bahasa System

Verilog telah digunakan. Laporan ini juga menjelaskan reka bentuk Pemproses Aliran

di dalam Bab ke-3. Juga, hasil dan perbincangan tentang kerja eksperimen yang

terlibat dalam project ini dilaporkan dalam Bab ke-4. Laporan project ini membuat

kesimpulan bahawa sebuah Pemprosesan Aliran berasaskan FPGA adalah berjaya

direka and diuji dengan kes-kes ujian pemprosesan imej yang spesifik. Laporan projek

ini juga menerangkan pembaikan yang boleh dilakukan keatas Pemproses Aliran

tersebut.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENTS iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF ABBREVIATIONS

LIST OF SYMBOLS

xiv

xv

 LIST OF APPENDICES xvi

1 INTRODUCTION

 1.1 Background and Project Rationale 1

 1.2 Project Problem Statements 2

 1.3 Project Objective 3

 1.4 Project Scope 4

 1.5 Project Achievement 5

2 LITERATURE REVIEW

 2.1 Related Works 7

 2.2 Stream Programming and Stream Processing 9

 2.3 Imagine Stream Processor Architecture 10

 2.3.1 Imagine Memory Architecture 11

viii

 2.3.2 Imagine Arithmetic Cluster 14

 2.3.2 Imagine Microcontroller 16

 2.4 Imagine Instruction Set Architecture 17

 2.4 FPGA-Based Stream Processor 21

3 PROJECT METHODOLOGY

 3.1 Introduction 25

 3.2 Literature Review 27

 3.3 Design Requirement and Specification 27

 3.4 Design Methodology 28

 3.5 Design Tools 29

 3.6 Stream Processor Design 30

 3.6.1 Kernel-level ISA Requirement 32

 3.6.2 ALU Clusters 33

 3.6.3 ALU Clusters Microarchitecture 34

 3.6.4 ALU Clusters Behavior 35

 3.6.5 Microkernel Controller 36

 3.6.6 Microkernel Controller

 Microarchitecture

37

 3.6.7 Microkernel Controller Behavior 41

4 RESULTS AND DISCUSSION

 4.1 Introduction 44

 4.2 Test Case 1: RGB to YUV Conversion 45

 4.2.1 Instruction Fetch 48

 4.2.2 Data Fetch and Memory Write Back 48

 4.2.3 Parallelism in Data Processing 48

 4.3 Test Case 2: Image Difference 53

 4.4 Test Case 3: Image Negative 54

 4.5 Test Case 4: Power-law Transformation 57

ix

 4.6 Resource and Performance Analysis 59

 5 CONCLUSION

 5.1 Conclusion 61

REFERENCES 63

Appendices A1 – C4 65-120

x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Literature Review List 7

2.2 SRF Stream as suggested by Rixner (2001). 13

2.3 Stream Level ISA (Khailany, 2003). 18

2.4 Kernel Level ISA. 19

3.1 Shows Resource Limitation and Usage for the Stream

Processor on Altera Cyclone IV GX.

28

3.2 Comparison between available HDL simulators. 30

3.3 Kernel-level ISA for the stream processor design. 32

4.1 Image different pixel snippets. 57

4.2 Performance analysis of the Stream Processor. 59

4.3 Resources allocation for Stream Processor ALU and

Microkernel Controller.

60

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Top level diagram of the stream processor. The scope of

this project is highlighted inside the red dashed box.

4

2.1 Example of media processing involving data streams and

kernels (Rixner, 2001).

10

2.2 Imagine Processor Block Diagram. (Rixner, 2001). 11

2.3 Imagine memory hierarchy. 12

2.4 Arithmetic Cluster (Rixner, 2001). 14

2.5 Functional Unit Details (Khailany, 2003). 15

2.6 Microcontroller connections 16

2.7 Microcontroller micro-architecture design (Khailany,

2003).

17

2.8 VLIW Instruction Format (Khailany, 2003). 20

2.9 Example timeline of stream command execution

(Khailany et al., 2008).

21

2.10 Architecture of the ConvNet Processor proposed by

Farabet et al. (2009).

22

2.11 2D Convolution operation as proposed by Farabet et al.

The operation involve multiple units of adders and

multiply-accumulate (Farabet et al., 2009).

23

2.12 Alves and Diniz’s (2011) organization of a custom

streaming processor.

24

3.1 Overall Project Methodology for Image Streaming

Processor.

26

3.2 Circuit Design Methodology for Image Streaming

Processor.

29

xii

3.3 Top level diagram of Image Stream Processor, showing

the scope of this project in dashed box.

31

3.4 Architecture of the arithmetic cluster unit. 34

3.5 Microarchitecture of a Half Buffer Bank. 35

3.6 High Level Behavior of ALU Cluster. 36

3.7 Top Block Diagram for Microkernel Controller Unit 38

3.8 Block diagram for Microcode Loader and Microcode

Storage.

39

3.9 Microkernel Sequencer Block Diagram. 40

3.10 Microkernel Decoder Block Diagram. 40

3.11 State diagram of Microkernel Controller Sequencer. 41

3.12 High Level Sequence of Microkernel Controller. The

scope of this project is marked with red-dashed box.

42

3.13 Bar diagram of the processing timeline of a stream

processor (Khailany, 2008).

43

4.1 RGB to YUV conversion equation. 45

4.2 Data flow graph of RGB to YUV conversion. 45

4.3 Stream-Kernel diagram form RGB to YUV conversion. 46

4.4 Microkernel for RGB to YUV conversion. 46

4.5 RGB888 was the input for the stream processor and the

resulting output was YUV888.

47

4.6 Modelsim waveform showing Instruction Fetch, follow

by input with data streams.

50

4.7 Closed-up on memory fetch wave form. 51

4.8 Memory read and write back operation. 51

4.9 Data processed in parallel. 52

4.10 Image difference operation. 53

4.11 Image difference stream operation. 53

4.12 Image Difference Kernel. 53

4.13 Image Different inputs and outputs. 54

4.14 Waveform of image difference operation. 54

4.15 Image negative stream operation. 55

4.16 Kernel-Stream diagram of image negative procedure. 55

xiii

4.17 Image negative microkernel. 55

4.18 Input (left) and result of Image Negative processing. 56

4.19 Power-law transformation equation. 57

4.20 Kernel-stream diagram for power-law transformation. 58

4.21 Microkernel for power-law transformation. 58

4.22 Input and output image for power-law transformation

operation. The result were verified with Matlab.

59

xiv

LIST OF ABBREVIATION

ALU - Arithmetic Logic Unit

FPGA - Field-Programmable Gate Array

GPP - General Purpose Processor

ISA - Instruction Set Architecture

RTL - Register Transfer Level

SIMD - Single Instruction Multiple Data

VLIW - Very Long Instructions Words

xv

LIST OF SYMBOLS

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A1 SystemVerilog source code for

HALF_STREAM_BUFFER.sv

65

A2 SystemVerilog source code for

HALF_STREAM_BANK.sv

66

A3 SystemVerilog source code for ALU.sv 68

A4 SystemVerilog source code for

ALU_CLUSTERS.sv

70

A5 SystemVerilog source code for

MICROC_DECODER.sv

72

A6 SystemVerilog source code for

MICROC_STORE.sv

82

A7 SystemVerilog source code for

MICROC_LOADER.sv

83

A8 SystemVerilog source code for

MICROC_SEQUENCER.sv

84

A9 SystemVerilog source code for MicroCont.sv 87

A10 SystemVerilog source code for

StreamProcessor.sv

89

A11 SystemVerilog source code for

StreamProcessor_TOP.sv

90

B1 SystemVerilog testbench for

testbench_MicroCont.sv

92

B2 SystemVerilog testbench for

testbench_RealRGBtoYUV100.sv

93

xvii

B3 SystemVerilog testbench for

testbench_RealImageNegative200.sv

100

B4 SystemVerilog testbench for

testbench_RealImageDifference.sv

104

B5 SystemVerilog testbench for

testbench_RealImagePowerLaw.sv

109

C1 Matlab source code for Image2ByteMem.m 115

C2 Matlab source code for GenerateImage.m 116

C3 Matlab source code for ImagePower.m 118

C4 Matlab source code for MakeNoise.m 119

1

CHAPTER 1

INTRODUCTION

1.1 Background and Project Rationale

Stream Processor is a type of programmable processor which exploit the

compute intensity, parallelism and producer-consumer locality in order to process

image and media efficiently (Khailany, 2003).

Compute intensity is defined as the number of arithmetic operation per global

memory reference or I/O (Khailany et al., 2008) where media processing application

such as image processing, video compression and three-dimensional graphics

requires high rates of arithmetic compared to conventional computing application.

Streaming programmable media processor which is designed to meet these demands

usually contains tens to thousands arithmetic unit. This increases the challenge of

providing the sufficient data bandwidth (Rixner, 2001).

On the other hand, data parallelism exists in stream processing because the

same function is applied to many records of a stream and each record can be processed

simultaneously without dependency from other records (Khailany et al., 2008). It is

very common for media processing to be greatly enhance with parallelism. Parallelism

in media processing can be categorized into three, which are instruction-level

parallelism (ILP), data-level parallelism (DLP), and task-level Parallelism (TLP)

(Khailany, 2003).

Producer-consumer locality is defines as specific temporal locality, where data

is produced once, read once or twice later, and never read again (Khailany et al., 2008).

In media processing, locality of reference for data accesses is another important

2

characteristic. The locality in media processing can be classified into kernel locality

and producer-consumer locality (Khailany, 2003).

Other than equipped with large number of arithmetic logics, streaming

processor architecture also equipped with a data bandwidth hierarchy such as the three

tiered data bandwidth hierarchy in Imagine Processor, which enabled the processor to

efficiently provide data bandwidth continuity for tens to hundreds of arithmetic units

(Rixner, 2001).

Even though a conventional load/store CPU or more commonly known as

general purpose CPU is also capable of processing media applications, a dedicated

stream media processor promise greater performance given same amount of resource

in term of area, gate count, and power since stream processor is design specifically to

exploit the three characteristic mentioned previously.

Since streaming processor architecture is significantly important in electronic

world and still actively being researched, I proposed this project to gain knowledge of

inner working of a streaming processor architecture and to find out how to improve

current designs with a focus on the VLIW Controller Unit and the Streaming

Arithmetic clusters designs.

1.2 Project Problem Statement

Recently, digital vision and imaging system have progressed greatly, but most

of the algorithms such as 3D graphic, video compression, video decode and 2D image

processing still requires high rates of arithmetic in the range of hundreds of billions

operands per second (Rixner, 2001) making the integration with embedded system

which are sensitive to power dissipation, physical size and cost very difficult.

Historically, this application have been met with ASICs or ASSPS, but these solutions

often lacking in flexibility. This project will propose a FPGA-based stream processor

for vision and imaging purpose.

When processed on so-called conventional load-store CPU, most media

processing algorithm take extremely large amount of CPU cycles and hence execution

time which hindered real time media application on a digital system (Khailany et al.

2008). Due to the nature of conventional CPU memory architecture, media processing

3

also require large amount of memory bandwidth and suffer higher rates if cache miss

since the cache are not optimized to take advantage of producer-consumer locality of

image processing (Khailany, 2003). The execution of multiple stream operators

aggravates the processing unit-external memory bandwidth bottlenecks (Alves et al.,

2011).

While fixed-function processors such as the one based on ASICs have been

able to match the high performance demanded by media processing algorithm,

programmability proved to be a key requirement in many digital systems which

processed complex and evolving algorithm (Khailany et al., 2008). Programmable

solutions also inherently have cost advantage over fixed function processor since a

single programmable chip can be used in many different systems. As image

resolutions, scene complexity and algorithmic complexity continue to rise, the demand

for real time performance will continue to increase.

1.3 Project Objectives

The objective of the project is to develop a programmable FPGA-based Stream

Processor ALU and its Controller Unit for the purpose of common image processing

algorithms.

The stream processor that is to be develop for the project will act as co-

processor which will offload specific image processing operation from a general

purpose host CPU. The intended stream processor is expected to work in a similar

manner as a Graphical Processing Unit (GPU) of a conventional PC, where common

simple operation will be done by the GPP and the intended circuit will only process

certain image processing algorithm.

The stream processor ALU will be developed with a set of internal buffers

registers to improve stream memory efficiency and to avoid memory operation

bottlenecks by eliminating register-to-memory operations for intracluster data

movement.

4

1.4 Project Scope

The circuit module to be designed in this project will be part of a larger high

speed FPGA-based embedded visual recognition system. This project will focus on

Stream ALU (ALU Clusters) design and ALU Controller Unit. Stream memory

components, except half buffer within the ALU Cluster, are out of scope of this

project. Following diagram shows the scope of this project within the dashed red box.

Figure 1.1: Top level diagram of the stream processor. The scope of this project is

highlighted inside the red dashed box.

The expected contribution of this project is a simulation model of the hardware

ALU computation core and a micro kernel controller unit on Modelsim with a set of

5

testbenches replicating the input of ALU and its controller. Items to be designed as

part of the ALU Clusters consist of:

1. A set of functional units (FUs) for addition/subtract, multiply, divide, and

logical shift left and right. It also support immediate operands and three input

functional units.

2. ALU internal buffers or also known as Local Registers Buffers (Half

Buffers) for all inputs of each functional units.

3. Interconnect between internal local buffers and FU outputs. This reduces

memory bandwidth.

On the other hand, items to be designed as part of the Microkernel Controller consist

of:

1. Very long instruction word (VLIW) control engines.

2. Microkernel storage to store the ‘Kernels’ (instructions).

3. Instruction fetch mechanism.

Signals from Stream Controller and data from SRF will be replicated within

testbenches and generated with the help of Matlab code. The design for the stream

processor is based on simplified Imagine Stream Processor.

1.5 Project Achievement

This project successfully modelled Stanford’s Imagine Processor, which was

a stream processor designed for custom VLSI, on a simulation with Altera Cyclone

IV as the intended target. Imagine Stream processor is the state of the art stream

processor that is designed for media processing application and still being actively

researched and enhanced.

The design created in this project fulfil the resource limitation within Altera

Cyclone IV including numbers of IO, number of LABs and dedicated memories. The

design of the stream processor were successfully simplified while stream processing

flow were maintained.

6

From reviewing the existing literature on stream processor, it is found that this

project could be the first project with complete documentation on the design and

methodology which simulated the Imagine Processor using System Verilog on a

FPGA.

The result of the image processing kernel from the stream processor were

compared to the output of similar algorithm in Matlab and it is proven to be correct.

Among the kernels tested are RGB to YUV conversion, image difference/subtraction,

image inversion and power law transformation.

63

REFERENCES

Alves, J. and Diniz, P. (2011). Custom FPGA-based micro-architecture for streaming

computing. 2011 VII Southern Conference on Programmable Logic (SPL).

Dessai, S. and Vutukuru, K. (2012). Design and Development of Stream Processor

Architecture for GPU Application Using Reconfigurable Computing.

International Journal of Reconfigurable and Embedded Systems (IJRES),

[online] 2(1). Available at:

http://iaesjournal.com/online/index.php/IJRES/article/view/1309 [Accessed 17

Dec. 2014].

Farabet, C., Poulet, C. and LeCun, Y. (2009). An FPGA-based stream processor for

embedded real-time vision with Convolutional Networks. 2009 IEEE 12th

International Conference on Computer Vision Workshops, ICCV Workshops.

Gonzalez, R. and Woods, R. (2007). Digital image processing. Reading,

Massachusetts: Addison-Wesley Publishing Company.

Kapasi, U., Dally, W., Rixner, S., Mattson, P., Owens, J. and Khailany, B. (2000).

Efficient conditional operations for data-parallel architectures. Proceedings 33rd

Annual IEEE/ACM International Symposium on Microarchitecture. MICRO-33

2000.

Kapasi, U., Dally, W., Rixner, S., Owens, J. and Khailany, B. (2002). The Imagine

Stream Processor. Proceedings. IEEE International Conference on Computer

Design: VLSI in Computers and Processors.

Khailany, B. (2003). The VLSI Implementation and Evaluation of Area- And Energy-

Efficient Streaming Media Processors. Ph.D. Stanford University.

Khailany, B., Williams, T., Lin, J., Long, E., Rygh, M., Tovey, D. and Dally, W.

64

(2008). A Programmable 512 GOPS Stream Processor for Signal, Image, and

Video Processing. IEEE J. Solid-State Circuits, 43(1), pp.202-213.

Kyrkou, C. (2014). Stream Processors and GPUs: Architectures for High Performance

Computing. [online] Available at:

http://sokryk.tripod.com/Stream_Processors_and_GPUs_-

_Architectures_for_High_Performance_Computing.pdf [Accessed 17 Dec.

2014].

Msdn.microsoft.com, (2015). Converting Between YUV and RGB (Windows CE

.NET 4.2). [online] Available at: https://msdn.microsoft.com/en-

us/library/ms893078.aspx [Accessed 23 May 2015].

Rixner, S. (2001). Stream Processor Architecture. Boston, MA: Kluwer Academic

Publishers.

	NuhairiAnuarMFKE2015ABS
	NuhairiAnuarMFKE2015TOC
	NuhairiAnuarMFKE2015CHAP1
	NuhairiAnuarMFKE2015REF

