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ABSTRACT 

 

 

 

 

The widespread use of static rectification and energy efficient equipment in 

end user loads result in a dramatic increase in harmonic content injection towards 

transformers connected to upstream power system.  Now, due to modern 

developments, energy efficient equipment, such as compact fluorescent lamps are 

easily available.  The use of energy efficient equipment increases rapidly in our 

country as saving of electrical energy is the main target of end users and also electric 

utility.  Meanwhile, these types of equipment contribute to power quality problems 

such as harmonic distortion.  The harmonic content generated by load causes the 

transformer to operate in higher power rating and may cause transformer operating 

failure in the long term.  This work was initially started with experimentation of 

transformer performance analysis in the presence of harmonic events.  The objective 

of this research is to develop the total harmonic distortion and efficiency model 

based on data analysis.  Experimental tests are performed to obtain transformer 

parameter.  Harmonic loads are modelled by utilizing the unique waveform 

characteristic of each individual harmonic load type through image processing and 

curve fitting methods.  Harmonic current injection model has been proposed and 

applied using transformer model through the experimental parameter in MATLAB 

Simulink.  The comparison between harmonic current injection model with the 

measured load in terms of true RMS current, apparent power, active power, true 

power factor and total harmonic distortion current have been done.  An analysis has 

also been done on experimental data by comparing the efficiency of transformer with 

and without harmonic distortion on identical load type.  The developed models for 

analysis of transformer efficiency with harmonic distortion indicate goodness of fit 

with R-square value close to 1 and Root Mean Square Error of less than 1. 
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ABSTRAK 

 

 

 

 

Penggunaan meluas penerusan statik dan peralatan cekap tenaga dalam beban 

pengguna akhir menyebabkan peningkatan dramatik dalam suntikan kandungan 

harmonik ke arah pengubah yang disambungkan kepada sistem kuasa huluan.  Sekarang, 

disebabkan oleh perkembangan moden, peralatan cekap tenaga, seperti lampu 

pendarfluor padat, mudah didapati.  Penggunaan peralatan cekap tenaga meningkat 

dengan pantas di negara kita kerana penjimatan tenaga elektrik adalah sasaran utama 

pengguna-pengguna akhir dan juga utiliti elektrik.  Sementara itu, jenis peralatan 

sebegini menyumbang kepada masalah kualiti kuasa seperti herotan harmonik.  

Kandungan harmonik yang dihasilkan menyebabkan pengubah beroperasi di peringkat 

kuasa yang lebih tinggi dan boleh menyebabkan kegagalan operasi pengubah dalam 

jangka masa panjang.  Kerja ini bermula dengan eksperimen untuk analisis prestasi 

pengubah dalam acara harmonik.  Tujuan penyelidikan ini adalah untuk membangunkan 

model herotan harmonik seluruh dan kecekapan berdasarkan analisis data.  Ujian 

eksperimen telah dilaksanakan untuk mendapat parameter pengubah.  Beban harmonik 

telah dimodel dengan menggunakan keunikan ciri-ciri bentuk gelombang bagi setiap 

jenis beban harmonic individu melalui teknik pemprosesan imej dan penyuaian lengkung.  

Model suntikan arus harmonik telah dicadangkan dan diaplikasikan dengan model 

pengubah melalui parameter eksperimen dalam MATLAB Simulink.  Perbandingan 

antara model suntikan arus harmonik dengan beban yang diukur dari segi arus RMS 

benar, kuasa ketara, kuasa aktif, faktor kuasa benar dan herotan harmonik seluruh arus 

telah dilakukan.  Analisis juga telah dilakukan ke atas data ujikaji dengan membuat 

perbandingan kecekapan pengubah dengan dan tanpa herotan harmonik pada jenis beban 

yang sama.  Model yang dibangunkan untuk analisis kecekapan transformer dengan 

herotan harmonik menunjukkan kebaikan suai dengan nilai R-kuasa dua menghampiri 

nilai 1 dan Ralat Punca Min Kuasa Dua kurang daripada 1. 
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CHAPTER 1 

OVERVIEW 

1.1 Overview 

Nowadays, the widespread application of static rectification and energy-

efficient equipment in end user loads with transformers having small (5M to 40MVA) 

and medium (40M to 250MVA) power range has resulted in a dramatic increase in 

the harmonic components of the load current for this equipment.  The use of energy-

efficient equipment in our country is increasing rapidly as end users and electric 

utility companies are looking forward to saving electrical energy.  Due to modern 

developments, energy efficiency equipment such as compact fluorescent lamp is 

easily available.  These types of equipment give rise to the power quality problem 

such as harmonic distortion.  Consequently, increased usage of these types of 

equipment gives rise to the harmonics on the transformer.  It is also well known that 

higher harmonic content in the current can cause higher current loss in winding 

conductors and structural parts linked by the transformer leakage flux field, and 

consequently, these losses are dissipated as heat and gives rise to higher operating 

temperature than normal. 

 

 

Transformers are one of the most important components from the generating 

station to end-user equipment; which play an important role in minimizing the losses 

throughout the stage by stepping up or stepping down the voltage.  In end-user 
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equipment, transformer is used to regulate the voltage from single phase 240V ac to 

the required output voltage.  

 

 

Common sources of harmonics in the industrial sector are electrical ballast, 

dc motor drives and rectifiers.  In this modern era, direct current power supply to the 

load of end-user equipment involves the use of rectifiers, since loads connected to 

the power supply in the end-user equipment will result in current distortion [1].  

Voltage distortion and current distortion drawn by these loads are one of the power 

quality issues on the transformer.  Losses in transformer can be categorized into no-

load and load losses.  The no-load loss arises from the voltage excitation of the core 

and eddy currents and magnetic hysteresis.  Load loss occurs mainly from the 

resistive losses in the conducting material of the windings [2].  There are three 

factors resulted by the increased transformer heating when the load current includes 

harmonic components.  

 

(a) RMS current: Harmonic currents may cause the transformer RMS 

current being higher than its capacity, if the transformer is sized only 

for the kVA requirements of the load; 

(b) Eddy-current losses: These are due to the magnetic fluxes which 

caused induced currents in a transformer; 

(c) Core losses: In the presence of harmonics, nonlinear core losses may 

increase depends on the effect of the harmonics on the design of the 

transformer core and applied voltage. 

 

 

There are reports regarding failures in transformers under normal operating 

condition with high levels of harmonic currents [3], such as nonsinusoidal currents 

drawn by nonlinear load causing excessive loss and heating [4] in transformer.  

Transformers are commonly constructed to utilize at rated frequency and apparent 

power.  Nowadays, with the presence of nonlinear loads, harmonic distortion often 
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result in higher losses on transformer, which can cause abnormal temperature rise 

and excessive winding losses [5].  

 

 

Figure 1.1 shows the well organised document and studied scattering failure 

data to identify the critical component of transformer.  These figures are not 

appropriate to simply reach conclusions on the causes of transformer fault.  This is 

because the degradation of transformer data was taken under its normal and 

abnormal operating conditions.  Maintenance works are vital to restore the condition, 

but costly in terms of outage duration, disruption of production line, restore and 

necessary replacement.  With statistical analysis, it is possible to describe the ageing 

processes of power transformer components statistically.  In year 2012, Voros et al. 

reviewed an expert system which evaluates condition of transformer with the status 

diagram, technical and statistic support to manage transformer lifecycle [6].  Now, 

the preventive maintenance costs have become more of primary concern.  In year 

2014, Suwanasri proposed asset management of transformer with failure statistical 

analysis to diminish operating and maintenance costs [7].  
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Figure 1.1 Failure statistics chart of power transformer by components as in [8]. 
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1.2 Problem Statement 

Harmonic distortion is one of the major power quality concerns for electric 

utility companies.  The non-linearity of end user loads which produces harmonic 

distortion will affect transformer performance.  The increasing use of non-linear 

loads being connected to the transformer also magnifies the power quality problems. 

Distortion of sinusoidal current waveforms due to harmonics causes increases in 

transformer winding losses and possible loss of equipment lifespan.  

 

 

Previously, other researchers took measurement at the power substation 

which did not provide details of type of loads operating at that time frame for the 

data taken.  The main focus is on the calculations which relate the losses with and 

without harmonic to a harmonic distortion factor.  This formulation does give an idea 

of the losses increment between fundamental frequency and harmonic frequencies, 

but does not model the performance of the transformer under condition of loads 

quantity and composition in relation with efficiency and harmonic distortion level.  

This study attempts to fill in this research gap.  Therefore, it is necessary to develop 

model which able to provide and compare detail of the performance of a transformer 

under the harmonic event.  The parameters involved in developing the model and 

method to relate the variables with a suitable regression model should be investigated.  

The model which can provide detailed comparison with different input parameter 

more precise.  This developed model is hoped able to be a helping hand in analyzing 

transformers with harmonic issues.  This research involved to setup a laboratory 

scale experiment initially to collect data which is costly and time consuming.  

Correspondingly, the cost and expenses can be reduced by avoiding the need of 

setting up similar experimental work in the future.   
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1.3 Objectives of the Study 

This study embarks on the following objectives: 

 

(a) to develop model of efficiency with variation of load, 

(b) to model the trend of total harmonic distortion under variation of load 

composition, 

(c) to analyze the model in term of harmonic distortion and transformer 

efficiency, and 

(d) to compare the variation in stage of separation based on weight 

distribution for transformer  equivalent parameter in simulation 

environment. 

1.4 Scope of Study 

This research develops a performance model of transformer with start-up 

with an experiment setup.  The data collection and analysis plan provide sufficient 

amount of information that are relevant to problem of study by using the available 

resources more efficiently.  The factors include transformer efficiency, loads 

composition, harmonic distortion level, apparent power, fundamental frequency, and 

harmonic frequency.  The overall data collection and analysis plan were utilized to 

consider how the experimental factors fit together into a model that would fulfil the 

specific objectives of the experiment and satisfy the practical constraints of time and 

money.  Understanding how the relevant variables fit into the design structure would 

indicate whether appropriate data could be collected in a way that permits an 

objective analysis that leads to valid inferences with respect to the stated problem. 

 

 

The transformer and loads components from the experimental work were 

digitized into the simulation environment model by analyzing the measurement data.  



6 
 

Each model of the components was compared individually before being combined to 

build the complete system model.  One of the main motivations for developing a 

simulation model or using any other modelling method is that it will be an 

inexpensive approach to gain important insights on when the costs, risks or logistics 

of manipulating the real system of interest are limited or prohibitive. 

 

 

In this study, all apparatus needed for measurement and test equipment were 

identified to ensure the measurement units or test equipment were set up according to 

the user manual provided, if any.  This was to minimise risk of making error of 

results with wrong setting, which would waste time in starting over again in the 

measurement process.  Another reason was to avoid damage to the equipment and 

also as a cautious step for personal safety.  Even though the end user equipment 

considered as loads were normal household’s lighting load, caution and awareness 

step should be taken from time to time when experimental work is being conducted.  

1.5 Thesis Organization 

 This thesis composes of six chapters, which are arranged as follows: 

 

Chapter 1 describes the overview of the study, which includes the objectives, 

scope of study, problem statement and methodology throughout the study.  Chapter 2 

reviews the past research work, and related on-going transformer research on power 

quality issue.  Transformer component model with its measured parameters are also 

described in this chapter. 

  

 

Chapter 3 presents in depth explanation of each part of the components 

involved in the experimental work.  Power quality analyser applied for measurement 

and its merit for quantifying the harmonic level are discussed in detail.  This chapter 
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also discusses the application of regression model on experimental data formulation 

and goodness indication of the fitting. 

 

 The overall system model with harmonic current injection model and 

transformer model in simulation environment are also presented in Chapter 3.  The 

programming of the image processing data requiring mathematical algorithm on load 

waveform is also discussed.  The mathematical theory involved in analysis tool 

applied in the simulation is presented as well. 

 

 

Chapter 4 presents explanation on the data analysis with the aim of 

developing mathematical models using the regression method to describe the studied 

relationship between the variability of the measurement results.  Discussion of the 

simulation results is also included.  Aspects such as transformer’s efficiency, total 

harmonic distortion level and apparent power consumption are discussed as well.  

Finally, Chapter 5 concludes the study and suggests several potential future works 

for improving the current work.  
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