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ABSTRACT 

The nonlinearities, uncertainties, and time varying characteristics of electro-

hydraulic actuator (EHA) have made the research challenging for precise and 

accurate control. In order to design a good and precise controller for the system, a 

model which can accurately represent the real system has to be obtained first. In this 

project, system identification (SI) approach was used to obtain the transfer function 

that can represent the EHA system. Parametric system identification method was 

utilized in this research as it emphasizes more on mathematical than graphical 

approach to obtain the model of the system. Multi-sine and continuous step signals 

were used as the input for the identification process. The models obtained were 

validated using statistical and graphical approach in simulation and experimental 

works to decide which model can represent the EHA system more precisely. 

Predictive functional control (PFC) was proposed and implemented for position 

control of the EHA. Besides, an optimal proportional-integral-derivative (PID) 

controller tuned by particle swarm optimization (PSO) was implemented in 

simulation and experimental work as comparison with the proposed controller. A 

comprehensive performance evaluation for the position control of the EHA is 

presented. As expected from the PFC main objective which is to realize closed-loop 

behaviour close to first order system with time delay, the experimental work 

conducted shows the controller capability to reduce the overshoot value by 87% as 

compared to the PID-PSO. The findings also demonstrated that the steady-state error 

was reduced by 37% and smaller integral absolute error (IAE). 
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ABSTRAK 

Parameter tak lelurus, ketidaktentuan, dan ciri-ciri yang berbeza-beza 

mengikut masa bagi penggerak elektro-hidraulik (EHA) telah menyebabkan 

penyelidikan yang mencabar untuk kawalan yang tepat. Dalam usaha untuk 

merekabentuk pengawal yang baik dan tepat untuk sistem berkenaan, model tepat 

dan boleh mewakili sistem sebenar perlu diperolehi terlebih dahulu. Dalam projek 

ini, pendekatan pengenalan sistem (SI) akan digunakan untuk mendapatkan 

persamaan matematik yang boleh mewakili sistem EHA itu. Kaedah pengenalan 

sistem parametrik telah digunakan dalam kajian ini kerana ia lebih menekankan 

kepada matematik daripada pendekatan grafik untuk mendapatkan model sistem. 

Multi-sinus dan isyarat langkah berterusan telah digunakan sebagai input untuk 

proses pengenalan. Model-model yang diperolehi disahkan menggunakan 

pendekatan statistik dan grafik dalam kerja-kerja simulasi dan eksperimen untuk 

menentukan model yang boleh mewakili sistem EHA yang lebih tepat. Kawalan 

fungsi ramalan (PFC) telah dicadangkan dan dilaksanakan sebagai kawalan 

kedudukan EHA. Selain itu, pengawal kadaran-kamiran-terbitan (PID) yang 

optimum ditala oleh pengoptimuman kawanan zarah (PSO) telah dilaksanakan pada 

simulasi dan ujikaji sebagai perbandingan dengan pengawal yang dicadangkan. Satu 

penilaian prestasi yang komprehensif untuk mengawal kedudukan EHA turut 

dikemukakan. Seperti yang dijangka daripada objektif utama PFC yang menyedari 

tingkah laku gelung tertutup dekat dengan sistem tertib pertama dengan kelewatan 

masa, eksperimen yang dijalankan menunjukkan keupayaan pengawal untuk 

mengurangkan nilai terlajak sebanyak 87% berbanding PID-PSO. Hasil kajian juga 

menunjukkan bahawa ralat keadaan mantap telah dikurangkan sebanyak 37% dengan 

pengurangan terhadap kesilapan kecil mutlak (IAE). 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

Fluid power control is an old and well-recognized discipline which deals with 

the transmission and control of energy by means of a pressurized fluid. It is 

contributed by the needs to control the increasing amount of power and mass with 

higher speeds and precision. The discipline can be traced back to 250 B.C with the 

invention of water clock by Ctsebios, an Alexandrian inventor [1]. The invention 

opened path to various industrial applications using water as the working fluid. In the 

modern day, the demand to control high power levels with more accuracy and faster 

control produced a combination of hydraulic servomechanisms with electronic signal 

processing which then called electro-hydraulic. Compared to pure mechanical or 

fluid signals, electronic medium in electro-hydraulic system allows the information 

to be transduced, generated and processed more easily while maintaining the delivery 

of power at high speeds by the hydraulic servo [2]. An electro-hydraulic actuator 

(EHA) is one of the most widely used applications of electro-hydraulic technology 

which play a very crucial part in shaping the modern era. 

 

There are many features and advantages of EHA compared to other popular 

actuator types such as pneumatic and electrical motor. The main advantage of EHA 

is the high force delivered by the actuator over the weight and size. This gives EHA 

an upper hand when precise motion control is desired while space and weight are 

limited such as in the transportable industrial field. Unlike electrical actuator, the 

EHA can maintain high loading capabilities for a longer period of time [3]. These 
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advantages have contributed to the increasing demands for various fields of 

applications including earth moving equipment, manufacturing equipment, and flight 

applications. However, the main issues in applying the EHA to any application is the 

dynamic behaviour that cause tracking errors and phase lag during the position 

tracking process [1]. 

 

The issues that cause dynamic behaviour of EHA are uncertainties, time-

varying and highly nonlinear due to nonlinear flow and pressure characteristics, 

backlash in control valve, actuator friction and variation in fluid volume due to 

piston motion and fluid compressibility [1, 5]. These make the modelling and 

controller designs for position control of EHA becoming more complex. 

 

EHA control issues could be categorized into position and force control 

problems. However, EHA position control problem is more attractive because of the 

wide range of applications. Thus, this research study will be focused on improving 

the position control of EHA system. 

1.2 Problem Statement  

The problem statement of this study can be expressed as follows: 

 

“An identification process and a predictive controller are necessary to control 

position of the EHA system due to its nonlinearities and uncertain characteristics” 

1.3 Research Objectives 

The followings are the objectives of this research. 

(i) To obtain transfer function that represents the EHA using system 

identification (SI) technique. 

(ii) To study and implement Predictive Functional Control (PFC) scheme for 

position control of the EHA system. 
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(iii) To conduct numerical simulation and real-time experiment for analyzing 

the performance of the controller with comparison to PID controller. 

1.4 Scope of Work 

This followings are the scopes of the research. 

(i) The position tracking of EHA is conducted for the linear type of motion 

(1-DOF) and controlled with proportional valve. 

(ii) Mathematical model of the EHA system is linear type. 

(iii) Performance analysis of the implemented controller performed in 

simulation and validated with optimized PID controller. 

(iv) EHA used with 250mm actuator stroke, 8L/min maximum flow rate, 230 

bar pressure. 

1.5  Contribution of the Work 

From the literature work conducted, it is obvious that there are significant 

issues related to the identification and control of EHA system particularly for 

position control that need to be investigated further. Several contributions can be 

made in identification and control strategy based on the problem statements 

discussed. The main research contributions from this study are as follows: 

 

(i) A new mathematical model that represent the developed EHA workbench 

using System Identification (SI) technique. 

(ii) A new control scheme for position control of EHA using predictive 

functional control (PFC) 
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1.6 Organization of the Project Report 

Chapter 2 presents the literature review of the related works regarding the 

research topic. The chapter starts with discussion on the types of valves used for 

transmission system. Next, the mathematical modelling of EHA system using system 

identification method is presented. Then, various control strategies that have been 

implemented on EHA specifically for position control is highlighted. At the end of 

chapter, predictive functional control (PFC) is reviewed for its possibility to be used 

in this research. 

 

In chapter 3, methodology approaches used in this research are presented. 

Overall system setup which explain the workbench, data acquisition method and 

components used are discussed in detail. Then, the mathematical modelling using 

system identification technique is presented which include the model type, input 

signal and the validation of the model obtained.  This chapter explained the state-

estimator design approach using closed-loop estimator. The proposed control 

strategy for EHA positioning which is predictive functional control (PFC) is 

presented. 

 

Chapter 4 presents the results and discussion on the simulation works and 

real-time experimental works conducted in this research. First, the result obtained 

from mathematical modelling using system identification is presented for two types 

of input signals which are multi-sine and continuous step. The model that can 

represent the EHA system is then selected using graphical approach. This chapter 

also presents the result for state-estimator or observer designed. Then, the result and 

discussion on the tuning of PFC algorithm and optimized using PID using PSO are 

presented. Result and discussion for the implementation of PFC algorithm in 

simulation and real-time experiment are also discussed. The result of the proposed 

controller is then compared and validated with the optimized PID. 

 

Chapter 5 summarizes the research findings and the recommendation of 

future research based on this study.  
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