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ABSTRACT 

 

 

 

 

 The purpose of this study is to investigate the effects of calcination 

temperature on the structure and surface morphology of calcium titanate (CaTiO3) 

ceramics.  The structure and composition of pre-sintered CaTiO3 powder and 

sintered CaTiO3 ceramic samples were analyzed by x-ray diffraction (XRD).  The 

crystallite size of the samples was also analyzed by XRD.  Scanning electron 

microscope (SEM) was used to analyze the surface morphology of the samples.  The 

chemical compositions were determined by energy dispersive x-ray spectroscopy 

(EDX).  The density of ceramic samples was measured by Archimedes’ method.  

XRD analysis shows that calcium carbonate (CaCO3) starts to react with titanium 

dioxide (TiO2) at temperature of 600°C and the size of CaTiO3 crystallite increases 

with the increase of calcination temperature.  The micrograph images from SEM 

show that elongated particles are present in the pre-sintered powder samples.  They 

are identified by EDX as CaCO3 particles, which shrunk in size as the calcination 

temperature increases.  Besides, pores that contribute to the reduction in density are 

also observed in the micrograph images of sintered ceramic samples from SEM.  The 

percentage density of sintered ceramic samples increases from 83.6% to 85.0% with 

the increasing of the pre-sintering temperature. 
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ABSTRAK 

 

 

 

 

Tujuan kajian ini adalah untuk mengkaji kesan suhu pengkalsinan terhadap 

struktur dan morfologi permukaan seramik kalsium titanat (CaTiO3).  Struktur dan 

komposisi sampel serbuk CaTiO3 pra-tersinter dan seramik CaTiO3 tersinter 

dianalisis menggunakan belauan sinar-x (XRD).  Saiz hablur sampel juga dianalisis 

menggunakan XRD.  Mikroskop elektron pengimbas (SEM) digunakan untuk 

menganalisis morfologi permukaan sampel.  Komposisi kimia ditentukan oleh 

spektroskopi serakan tenaga  sinar-x (EDX).  Ketumpatan sampel seramik diukur 

menggunakan kaedah Archimedes.  Analisis XRD menunjukkan kalsium karbonat 

(CaCO3) mula bertindak balas dengan titanium dioksida (TiO2) pada suhu 600°C dan 

saiz hablur CaTiO3 meningkat dengan peningkatan suhu pengkalsinan.  Imej 

mikrograf SEM menunjukkan bahawa terdapat zarah memanjang dalam sampel 

serbuk pra-tersinter. Zarah berkenaan telah dikenal pasti dengan EDX sebagai 

CaCO3, yang mengecut apabila suhu pengkalsinan meningkat.  Selain itu, liang yang 

menyumbang kepada pengurangan ketumpatan seramik juga diperhatikan dalam imej 

mikrograf SEM bagi sampel seramik tersinter.  Peratusan ketumpatan bagi sampel 

seramik tersinter meningkat daripada 83.6% kepada 85.0% dengan peningkatan suhu 

pra-tersinter. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Since the discovery of a perovskite material by Gustav Rose in the Ural 

Mountains of Russia in 1839, this material has made its own way in various fields of 

research and application.  Perovskite oxide materials are excellently exhibiting 

interesting physical properties including dielectric, ferroelectric and luminescence 

(Lemanov et al., 1999; Grinberg et al., 2013; Park et al., 2014).  The different in 

their physical properties are related to phase transitions, which in turn are sensitive to 

variables such as grain size, purity, chemical composition, number of surface and 

bulk defects, and sintering conditions.  For example, X-ray diffraction data of a study 

conducted by Grinberg et al. (2013) shows a gradual transition from the 

orthorhombic ferroelectric potassium niobate (KNO) structure to a cubic structure as 

the chemical composition was changed.   

 

 

 The unique properties of perovskite materials have attract the attention of 

researchers to manipulate their structure and composition so that these materials can 

be served as ceramics, electronics, catalysts or even superconductor (Patterson, 2012; 
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Zhu et al., 2014; Rubel et al., 2014).  Most of the useful ferroelectric and 

piezoelectric materials in industrial use are derived from the perovskite structure. 

  

 

All this time, many synthesis methods have been explored as encouraged by 

the great demand of industrial applications. Various methods have been proposed 

and developed for preparation of perovskite powder such as solid-state reaction, wet-

chemical, sol-gel, mechanical and chemical methods amongst others. Chemical 

methods is seems to be the best synthesis method compared to other methods as it 

has advantages such as high-purity, homogeneity and precise composition.  

Nevertheless, most of these chemical methods have complicated procedures involved 

and not cost-effective due to the requirement of high-purity precursor compounds 

that are sometimes more expensive than the widely available oxides and carbonates.  

 

 

In this study, experiments on widely used methods such as solid-state 

reaction involving synthesizing at various calcinations temperature to produce the 

perovskite powders were conducted and analyzed to determine if the processes can 

possibly resulted in the production of perovskite powder suitable for perovskite 

ceramics fabrication. 

 

 

 

 

1.2 Problem Statement 

 

 

 At this moment in microelectronic industry, advanced ceramics became the 

key of success for the development of integrated circuits. In the future, calcium 

titanate (CaTiO3) could be of major use in this field of applications.  In spite of that, 

pure CaTiO3 ceramics are difficult to densify and too fragile for many practical 

applications.  Therefore, research on preparation of CaTiO3 ceramics starting from 

the synthesis of CaTiO3 powders is interesting to study.  Synthesis method of CaTiO3 

powders has played a significant role in determining the properties of CaTiO3 
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ceramics.  Mixing two or more materials powder followed by heat treatment 

processes may change the properties of the mixed powder.  It is known that heat 

treatment capable of changing structural properties of materials.  Normally, CaTiO3 

ceramics are produced via solid-sate reaction by sintering starting CaCO3 and TiO2 

powders mixture at high sintering temperature.  However, the high temperature 

causes inhomogeneity and contamination by impurity in final products (Evans et al., 

2003).  On the other side, calcinations process have been used as pre-sintering 

process in solid-state reaction to reduce the sintering temperature, however, the 

effects of calcining the starting mixed CaCO3-TiO2 powders prior to sintering 

process have received less attention.  According to Mousavi (2014), “the more 

important processes that influences the product characteristics and properties are 

powder preparation, powder calcining and sintering”.   

 

 

It remains a great challenge to obtain pure CaTiO3 phase with simple process, 

low cost and high sinterability.  Optimizing the powder preparation process is 

necessary to obtain pure CaTiO3 ceramics.  Heat treatment is one of the factors that 

can affect the micro-structure of CaTiO3 powders, which in turn affect the micro-

structure and sinterability of CaTiO3 ceramics.  Sinterability is “a property of the 

material to densify during heating” (Shoulders, 2009).   This study is conducted to 

explore the potency of preparing pure CaTiO3 ceramics using sintering temperature 

of 900°C with simple powder preparation, which prior calcinations was used as pre-

sintering process.  Structural, morphological, elemental composition and sinterability 

properties of CaTiO3 in form of powders and ceramics will be studied. 

 

 

 

 

1.3 Objectives of Study 

 

 

The objectives of this study are: 

i) To determine the structure characterization, elemental composition and 

surface morphology of CaTiO3 powders prepared by solid-state reaction, 
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ii) To determine the effects of pre-sintering process on structural, surface 

morphology and density of sintered CaTiO3 ceramics, 

iii) To investigate the potency of calcinations as pre-sintering process in 

increasing the density of sintered CaTiO3 ceramics. 

 

 

 

 

1.4 Scope of Study 

 

 

Sintered CaTiO3 ceramic are fabricated using solid-state reaction.  Seven 

samples of pre-sintered CaTiO3 powder are prepared first by mixing CaCO3 and 

TiO2 powders before fabricated into ceramic.  Six of the pre-sintered CaTiO3 powder 

samples are calcined at different calcinations temperature between 400°C and 900°C 

at 100°C interval.  The other one powder sample is remained untreated.  Calcination 

is applied to decomposing CaCO3, so the samples with no or very small amount of 

CaCO3 trace are chosen to fabricate the ceramics.  A ceramic that is fabricated from 

sintering the untreated powder sample is used to compare its results with the sintered 

ceramic samples with prior calcinations process.  Therefore, the effect of calcinations 

as pre-sintering process on the sintered CaTiO3 ceramic samples could be 

determined.  Structural characterization, especially materials composition, phase 

change, and crystallite size, are examined using XRD.  Surface morphologies of pre-

sintered CaTiO3 powder and sintered CaTiO3 ceramic samples are observed by SEM.    

Lastly, Archimedes’ method is used to measure the density of sintered CaTiO3 

ceramics.  Most of the preparation and characterization of samples are performed in 

laboratories in Universiti Teknologi Malaysia. 
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1.5 Significance of Study 

 

 

This study is important for other researchers who are interested in perovskites 

and ceramics materials.  This study implemented a synthesis process approach to 

obtain a pure and high-density ceramics using solid-state reaction at low sintering 

temperature.  Fabrication of CaTiO3 ceramics with the aid of prior calcinations as 

pre-sintering process gives them another alternative to produce CaTiO3 ceramics at 

sintering temperature lower than 1000°C. 
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