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Abstract—One of the most important aspects for body centric communication is the development
of the textile antenna for on-body communication. Antennas for on-body environment usually suffer
performance degradation caused by the human body. Apart from that, textile antenna gets easily bent,
flexed, wrinkled or wet. This paper presents an investigation on three different designs and types of
planar antennas, which are single band textile dipole antenna, fractal Koch multiband dipole antenna
and monopole ultra wide band antennas. The performance of the antennas has been evaluated in terms
of bending, wetness condition and on-body simulation. The results show that the bending effect is
not critical in free space for the planar antennas, but the performance is notably degraded under wet
condition while the antenna reflection coefficient is shifted when placed on the human body.

1. INTRODUCTION

Body centric wireless communication is the subject area combining Wireless Body Area Network
(WBANs), Wireless Sensor Network (WSNs) and Wireless Personal Area Network (WPANs). The
need of such body centric communication in today’s society is evident based on its wide range of
wearable applications including healthcare, lifestyle, protection, monitoring and safety [1, 2]. Types of
communications within the body area networks can be divided into three categories, namely off-body
communications involving off-body to on-body device or system, on-body communications involving
on body networks and wearable system and in-body communication involving the communications
between medical implants and sensor networks [3]. Even though security and privacy issues arise with
the implementation of this type of communication, its importance can be observed by the rising number
of related research conducted over the years.

The wearable system made from 100% fabric material has attracted a lot of attention among
researchers. This novel technology is known as “smart clothing”, which generally consists of a
microcontroller, sensors, energy source, radio frequency devices including antenna, transmitter and
receiver. The smart clothing will be very beneficial in various monitoring activities such as user
detection, location tracking and real-time health monitoring [4]. For example, VTAMN shirt is
integrated with biosensor and bio actuator such as ECG reading [5], temperature and fall detection for
tele-assistance in medicine, WEALTHY is developed with intelligent monitoring during task and physical
exercise [6] and LIFE SHIRT is equipped with recording psychical parameter such as electrocardiogram,
ribcage , body posture and body oxygen saturation [7]. The wearable system can also be used for
children tracking, exercise and diet progress monitoring, or tracking the army’s location and condition.
Recently, textile sensors using nano-electric polymer have been developed to monitor truck motion for
rehabilitation harmful activities [8].
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For on-body communication, choosing a suitable type of antenna is very crucial as antenna
performance consequently affects the efficiency of a system. On the other hand, it is also vital for
the antenna to have a performance that supports the electromagnetic signal propagation close to the
body. The wearable antennas using textile material such as denim [9–11], felt [12] and foam fabric [13]
have been mostly implemented on body centric communication due to the flexibility and robustness to be
equipped on textiles that can be worn as part of clothing. On top of that, textile antennas are also cheap,
light, and can operate in a wide range of frequencies. For example, the fully Ultra Wideband (UWB)
all-textile is designed using felt fabric in WBAN application [14], 2.45 and 5.2 GHz Sierpinski inverted-F
antenna is designed using polyester fleece substrate for various future 802.15 wireless standard [15] and
2.45 GHz dual polarized patch antenna is designed using flexible protective foam with fully integration
into protective garment [16].

In designing wearable antennas, their features such as stability of performance, and flexibility and
durability of the materials are important to be tested beforehand. Textile antenna is a suitable candidate
for wearable application since this antenna is capable to give comfort to users. However, the bending
effect of the antenna towards different body placement may consequently change the physical structure
of the antenna. Hence, affecting the antenna resonance frequency is existed. In addition, it is also
very important to consider wetness aspect in designing textile antennas. The high dielectric constant
of water could alter the antenna properties, subsequently affecting its overall performance. From the
previous research, 2.45 GHz antenna needs less than 3% of water absorption to ensure a stable antenna
performance [17]. This paper discusses the performance of three planar antennas with a human body in
close proximity. The bending and wetness conditions are also considered and further discussed in this
paper.

2. TYPES OF PLANAR TEXTILE ANTENNA

Single band, UWB band and multiband antennas have been designed using denim material as substrates
and ShieldIt fabric as conducting elements as shown in Fig. 1. Firstly, a single band dipole antenna
is designed with L = 25.5 mm and w = 4mm; operating at 2.45 GHz. A CPW-fed UWB antenna is
designed to operate between 2 and 13 GHz with the dimension of radius, rada = 20 mm, radb = 25 mm,
h = 66 mm and l = 40 mm [18]. Then, the Koch-fractal multiband antenna is designed with dipole
structures operating at 0.9, 2.5 and 5.8 GHz [19] with respective dimension, l1 = 54.9 mm l2 = 24.45 mm,
l3 = 7.05 mm and w = 3 mm. The permittivity of denim fabric is found to be 1.67 with tangent loss of
0.025. The electrical properties of denim were examined by using open ended coaxial probe method. The
thickness of the denim substrate is 0.85 mm. The ShieldIt fabric is introduced as conductive element
which consists of a rugged rip-stop polyester substrate, conductive nickel and copper plated with a
non-conductive hot melt adhesive on its reverse side. The ShieldIt fabric characterized as hydrophobic,
reduce moisture absorption and allow maintain conservation its electromagnetic properties [20].
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Figure 1. Planar textile antenna using denim material. (a) Single band dipole antenna. (b) CPW
UWB antenna. (c) Koch fractal multi-band antenna.
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3. RESULTS AND DISCUSSIONS

The textile antennas are evaluated toward different placements on human body, bending, and wetness
experiment. From the previous research, degradation of resonant frequency of 2.45 GHz cotton antenna
performance has been reported under the bending condition due to change of the physical antenna
structure [21]. This is caused by the electromagnetic (EM) coupling effect from the human body
influence the antenna performance such as input impedance, power efficiency, resonant frequency
and bandwidth [22]. Futhermore, the antenna placement on the body needed to be study including
the forearm, arm, chest, and backside to find the placement which is able to maintain the antenna
performance. Then, the textile antenna is also needed to be investigated under wet condition to evaluate
antenna performance with the presence of water. The water has high dielectric constant could change
the resonant frequency and impedance bandwidth drastically [23] under wet condition. According
to the consideration fact, the antenna needs to be designed to operate well in all conditions. The
antenna performance of resonant frequency, reflection coefficient and bandwidth are evaluated under
both conditions.

3.1. Antenna Placement on Human Body

In practice, the textile antenna is usually placed on the arm, chest and backside of a human body. In
this research, Gustav human body model (as shown in Fig. 2) that is made available by CST is used in
the simulation. The antenna is placed at the backside of the human body with 1mm gap. The backside
area is chosen because at this position the frequency detuning of the antenna due to the composition of
human body (skin, tissue and muscle) can be minimized [24]. In addition, the flat and wide body area
is proposed as the suitable antenna placement as it avoids bending effect on curved body.

Figure 2. Body antenna placement.

In Figs. 3, 4 and 5, the resonant frequency is shifted due to the presence of human. The antenna
placement on human body provides impact on antenna performance due to electromagnetic coupling
effect of body tissue. For on-body measurement, the resonant frequency of 2.45 GHz band antenna
is shifted for about 0.69 GHz as depicted in Table 1. The resonance of multiband antenna is shifted
about 0.25 GHz at the first band, 1.26 GHz at second band and 1.83 GHz at the third band to the lower
frequency. The operating frequency of ultra wideband antenna is slightly affected. However, the ultra
wideband antenna will not operate between 5.12 and 6.14 GHz with presence of the human body. The
impedance bandwidth has slightly increased by the proximity to the human body due to the influence
of body on the reactive field.

3.2. Bending Effect

While the textile antenna provides potential solution for body centric communication, it has some
drawback due to bending. To account for the bending effect, the textile antenna is bent on cylindrical
polystyrene (εr ≈ 1) with diameter of 7 cm which is equivalent to the size of the human arm. Fig. 6
shows the bending experiment of the multi-band fractal Koch dipole textile antenna by using polystyrene
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Figure 3. Simulated reflection coefficient |S11|
plot of 2.45 GHz dipole antenna with human body.
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Figure 4. Simulated reflection coefficient |S11|
plot of Koch-fractal multiband antenna with
human.
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Figure 5. Simulated reflection coefficient |S11|
plot of CPW-fed ultra wideband antenna with
human body.

Figure 6. Koch fractal multiband antenna are
bent on polystyrene cylinder.
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Figure 7. Measured |S11| plots of the 2.45 GHz
single band antenna under bent condition.
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Figure 8. Measured |S11| plots of the Koch
fractal multiband antenna under bent condition.

cylinder. The measured results of the planar antennas under free and bent condition are plotted in
Figs. 7, 8 and 9 respectively. Moreover, the results obtained are tabulated in Table 1. As can be seen,
no significant changes of the |S11| when the antennas are bent. Although, slight resonant frequency
detuning is observed for each frequency band of all type of planar antennas investigated in this paper,
the performance of the antenna is acceptable fullfill the requirement application.
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Figure 9. Measured |S11| plots of the CPW fed ultra wideband antenna under bent condition.

Table 1. Resonance frequency and bandwidth of planar antennas with human body.

Types of antenna No of Band
Resonance Frequency (GHz) Bandwidth (GHz)
Free Human Body Free Human Body

Single Band 1st 2.45 1.76 0.36 0.44

Multiband
1st
2nd
3rd

0.94
2.41
5.88

0.69
1.15
4.05

0.10
0.42
0.79

0.25
0.61
2.35

Ultra wideband 1st 1.64–12.60 1.32–5.12, 6.14–12.27 10.96 9.93

Table 2. Resonance frequency and bandwidth of planar antennas under bent condition.

Types of antenna No of Band
Resonance Frequency (GHz) Bandwidth (GHz)

Flat Bent Flat Bent
Single Band 1st 2.44 2.35 0.32 0.42

Multiband
1st
2nd
3rd

0.915
2.44
5.11

0.915
2.48
5.16

0.11
0.15
1.05

0.09
-

1.00
Ultra wideband 1st 1.8–13.0 1.8–13.0 11.2 11.2

In this study the effect of antenna bending has been analyzed. Table 2 shows the effect of bending
for three different types of antennas. Based on Table 2, the resonant frequency is shifted slightly
to lower frequency under bent condition primarily for 2.45 GHz single band antenna about 0.09 GHz
and multiband antenna at the third band about 0.05 GHz. It can be seen that only minor shift on
the resonant frequency is observed when the antenna is bent if compared to the flat condition. The
input impedance and resonant frequency are slightly changed due to strecthing and compression of
antenna structure, hence altering the resonant length of the antenna. On the other hand, bending
has negligible effect on the ultra-wideband antenna performance. The antenna structure mantain the
antenna performance under bent condition. Despite slight deviation are existed compared to the flat
condition, the bent CPW monopole could maintained a 10 dB bandwidth, hence preserving the wideband
feature of the antenna. Generally, bending is found to cause minor effect on the impedance matching
of the antennas.

The radiation patterns for the fractal Koch multiband are shown in Fig. 10. Fig. 11 shows the
2.45 GHz dipole antenna with bending radius using cylindrical polystyrene. The simulated and measured
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radiation pattern shows a good agreement, generating a near omnidirectional pattern in azimuth plane.
The same result is obtained for single band textile dipole antenna. The antennas produce omni-
directional radiation pattern at straight and bent condition as shown in Fig. 12. The insignificant
discrepancy has proved that the antennas are less affected by the bending size. From the graph, the
textile CPW monopole retained good performance under bending condition. However, small deviation
is observed between the bent and flat antennas.

Figure 13 shows the measured radiation patterns for UWB antenna under bent and flat conditions
at 2.45 GHz and 5.8 GHz, respectively. The polar plots show that the radiation pattern characteristics
are found to be reasonably retained between bent and flat cases at 2.45 GHz and 5.8 GHz for both planes.
From the results, small deviations can be observed especially in the E plane’s patterns. However, since
the deviation is minor, satisfactory agreement between the patterns of bent and flat monopoles is
concluded.
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Figure 10. Measured radiation patterns of multiband antenna at 0.915, 2.45 and 5.8 GHz under
bending condition.

Figure 11. Bending experiments of fully textile dipole antenna.

3.3. Wet Conditions

In wearable communications systems, wet conditions are also needed to be considered. If the antenna
used is a textile type of antenna, it is specifically designed to be able to function in wet environment
such as in rain or during washing process. In order to test the performance of the wearable antenna in
wetness conditions, it is fully immersed in water.

The actual mass of the antenna as weighed by using digital scales before it is immersed into the water
is shown in Fig. 14. After the antenna is completely immersed into the water, the weight is increased
for almost 50% from actual weight. Then, the antenna is left to dry to monitor the percentage of water
absorption reading, which is found to reach 100, 50 and 0%. Next, the antenna is soaked into the water,
and the weight is then recorded. The |S11| of the antenna is collected continuously until the antenna
is fully dried. The antenna is then dried under the sunlight to obtain variable weight of the antenna.
These steps are repeated for all antennas considered in this work. The percentage of water absorption



36 Jalil et al.

-30 -25 -20 -15 -10 -5 0
-30

-25

-20

-15

-10

-5

0

-30-25-20-15-10-50

0

30

60

90

120

150

180

210

240

270

300

330

Flat
Bent

-30 -25 -20 -15 -10 -5 0 5
-30

-25

-20

-15

-10

-5

0

5

-30-25-20-15-10-505
-30

-25

-20

-15

-10

-5

0

5

0

30

60

90

120

150

180

210

240

270

300

330

Flat
Bent

(a) E plane --- 2.45 GHz (b) H plane --- 2.45 GHz

Figure 12. Measured radiation patterns of dipole antenna at 2.45 under bending condition.

Table 3. Resonance frequency of the antenna under wetness condition.

Types of antenna No of Band

Resonant Frequency (GHz)
Before
washing

(0%)

Complete Wet
(100%)

Damp
(50%)

Dried
(0%)

Single Band 1st 2.45 1.64 1.82 2.39

Multiband
1st
2nd
3rd

0.89
2.45
5.84

0.72
1.20
3.32

0.76
1.78
4.50

0.89
2.50
5.69

Ultra wideband 1st 1.77–13 3.18–13 1.99–13 1.80–13

can be calculated by using Equation (1) below:

Water absorption(%) =
current mass − dry mass

immersed mass − dry mass
× 100% (1)

From wetness experiments, the performances of the antennas are evaluated and tabulated in Table 3.
From Fig. 16, the resonant frequency of 100% wet multiband antenna has dropped from 0.89 to 0.72 GHz,
that is about 19% at the first band, 2.45 GHz to 1.2 GHz that is about 49% at the second band, and
5.84 to 3.32 GHz that is about 43% at the third band. However, the resonant of single band antenna is
changed from 2.45 to 1.64 GHz, by about 33% as shown in Fig. 15. The starting operating frequency
of ultra wideband antennas covers from 1.77 GHz before washing as shown in Fig. 17. However, the
operating frequency is changed to 3.18 GHz after the antenna is fully wet. The resonant frequency of
100% fully dried comes back to the same value as the actual antenna in free space. It is observed that
the antenna performance is degraded as the water absorption is high and then comes back to the usual
performance when there is no more water absorption. The operating frequencies are shifted to the lower
frequency implying that the effective dielectric constant is increased by the existence of water.

Figures 15, 16 and 17 show the reflection coefficient |S11| responses at different percentages of
wetness level for textile antenna, respectively. The textile antenna is fully dried with 0% of water level
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Figure 13. Measured radiation patterns of textile UWB antenna at 2.45 and 5.8 GHz under bending
condition.

while the textile antenna is completely in wet condition with 100% of water level. Table 3 shows the
measured resonant frequency result of the single band, multiband and UWB antenna in four different
states such as before washing, complete wet, damp and dry. Figures 15, 16 and 17 show that the
reflection coefficients in dB of the antennas are proportional to the wetness level percentage. In other
words, the reflection coefficients of the antennas are shifted to the lower frequency region with increasing
volume of water in the antennas. The presence of water changes the properties of the substrate. The
water increases the permittivity of the substrate to a higher value which causes the minimum reflection
coefficient to shift to lower frequencies. It can be concluded that single and multiband antennas cannot
operate well in wet condition. However, the fully wet UWB antenna still performs well between 3.18
and 13 GHz.

Similar to previous case for the complete wet antenna, S11 performances of all the antennas
deteriorate since high dielectric constant of water dominates the permittivity of the wet antenna.
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Figure 14. Fractal Koch multiband antenna are
immersed in water.
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Figure 15. Measured |S11| plots of the 2.45 GHz
single band antenna under wetness condition.
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Figure 16. Measured |S11| plots of the
Koch fractal multiband antenna under wetness
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Frequency, GHz
2 4 6 8 10 12

-50

-40

-30

-20

-10

0

Before washing
Complete wet
Damp
Dry

S
11

 d
B

Figure 17. Measured |S11| plots of the CPW fed
ultra wideband antenna under wetness condition.

Therefore, the resonance is seen to be shifted to the lower frequency as expected. The reflection
coefficients of all antennas are observed and slowly return back to the original curve when the antenna
is fully dried. However, since there is still moisture left in the antenna, the curve is not exactly the
same as the original. On the other hand, the fully dried curve is seen to follow closely to the original
before washing state. But, the exact original curve cannot be attained since the antenna experiences
slight property changes due to shrinking.

4. CONCLUSION

Planar textile antenna is the most suitable antenna for body centric communication system. The
textile antenna performance can be optimized by selecting materials with high conductivity and using
a proper structure in the design. Additionally, the stability of antenna performance in terms of gain
and operating frequency need to be considered for the used in various conditions such as on-body
measurement, bending and wet condition. From the bending result, no significant frequency detuning is
observed. To minimize the bending effect of an antenna, the antenna needs to have high bandwidth to
ensure that the antenna is stable and can perform well at the desired operating frequency. The antenna
also did not work under wet condition due to the high permittivity value of water. Therefore, the
substrate needs to be made of waterproof fabric to ensure that the substrate has low water absorption.
From the research, it can be seen that the CPW-fed ultra wideband antenna is the best candidate of
planar textile antenna among Koch fractal multiband antenna and 2.45 GHz dipole antenna because
the antenna performs well under all consideration including on-body measurement, bending effect and
wetness condition.
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