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Abstract 

 

Three operating parameters were pressure, temperature and particle size of supercritical carbon dioxide 

extraction of oil from Swietenia mahagoni have been optimized by response surface methodology to obtain 
high yield of oil. Results showed that data were adequately fitted into the second-order polynomial model. 

The linear and quadratic terms of independent variables of temperature, pressure and particle size have 

significant effects on the oil yield. Optimum conditions for oil yield within the experimental range of the 
studied variables were 29.99 MPa, 55.29oC and 0.75 mm, and the oil yield was predicted to be 20.76%. 
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Abstrak 

 
Minyak Swietenia mahagoni telah diekstrak menggunakan kaedah superkritikal karbon dioksida di mana 

tiga parameter iaitu tekanan, suhu dan sais zarah telah dioptimumkan menggunakan teknik gerak balas 

permukaan untuk mendapat hasil minyak yang tinggi. Keputusan telah diperolehi dengan memasukkan data 
kedalam model polinomial tertib kedua. Terma linear dan kuadratik menunjukkan bahawa pemboleh ubah 

tekanan, suhu dan saiz zarah mempunyai peranan yang penting pada penghasilan minyak. Keadaan 

optimum dalam julat eksperimen ialah 29.99 MPa, 55.29℃, 0.75 mm dan hasil minyak yang diramal ialah 

20.76%. 
 

Kata kunci: Benih Swietenia mahagoni; pengeluaran CO2 superkritikal; kaedah permukaan response 
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1.0  INTRODUCTION 

 

Swietenia mahagoni (Linn.) Jacq. (Meliaceae) grows mainly in 

tropical areas of Asia, such as India, Malaysia, Indonesia and 

southern mainland China. The seeds have been applied as 

traditional medicine for treatment of hypertension, diabetes, and 

malaria, while the decoction of its bark has been used as a 

febrifuge [1]. The therapeutic effects associated with the seeds 

are mainly caused by the biologically active ingredients, fatty 

acids and tetranortriterpenoids [2]. There are reports of S. 

mahagoni seeds having anti-inflammatory, antimutagenicity, 

and antitumour activities [3]. The plant extracts have been 

accounted to possess antibacterial and antifungal activities. 

Limnoid obtained from S.mahagoni has antifungal activity and 

diabetes therapy [4]. The seeds of S. mahagoni are good 

agricultural products and have been found to be potentially rich 

in fat (64.9%) [5]. 

  Conventional procedures for the extraction of plant 

materials include hydrodistillation and organic solvent extraction 

using percolation, maceration or Soxhlet techniques. However, 

there are drawbacks with these methods such as time and labour 

consuming operation, and involves large volumes of hazardous 

solvents. Nevertheless, there is increasing interest in alternative 

extraction methods that consume smaller quantities of organic 

solvent due to the rising solvent acquisition and disposal costs,as 

well as regulatory restrictions [6]. Therefore, it is highly desired 

to develop alternative extraction techniques with better 

selectivity and efficiency. Consequently, supercritical fluid 

extraction (SFE) as an environmentally responsible and efficient 

extraction technique for solid materials was introduced and 

extensively studied for separation of active compounds from 

herbs and other plants [7].  

  Carbon dioxide (CO2) is the most common choice of 

supercritical fluid due to its advantages of being non-toxic, non-

flammable, cost effective, and can be easily removed from the 

extract following decompression [8, 9]. Currently, SFE has 

become an acceptable extraction technique and being used in 

many different areas. SFE of active natural products from herbs 

or more generally, from plant materials has become one of the 

most important areas of application. Supercritical carbon dioxide 

(SC-CO2) was successfully used in the extraction of edible oils 

from a wide range of seeds, including amaranth [10], hiprose 

[11], cuphea [12], flax [13], sunflower and rape [14].  
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Response surface methodology (RSM), originally described by 

Box and Wilson [15], is a collection of mathematical and 

statistical techniques useful for modeling and analysis of 

problems in which a response of interest is influenced by several 

variables and the objective is to optimize this response [16]. 

Recently, RSM has been successfully applied to optimize SC-

CO2extraction of oils from Salvia mirzayanii[17], silkworm 

pupae [18], Passiflora seed [19], wheat germ [20], cottonseed 

[21], Curcuma longa [22], rosehip seed [23], Cyperus 

rotundus[24] and amaranth seed [25].  

  In the present study, SC-CO2 was used to extract the oil 

from S.mahagoni seed. The aim was to optimize the processing 

conditions, including pressure, temperature and particle size by 

applying response surface methodology. The response variables 

were examined with respect to the yield of oil under different 

operating conditions. 

 

 

 

 

 

 

 

 

2.0  MATERIALS AND METHODS 

 

2.1.  Plant Material Preparation 

 

S.mahagoni seeds were collected from Indonesia. The seeds 

were rinsed with tap water to remove any foreign particles and 

dirt prior to drying. Then, the cleaned seeds were cut into small 

pieces and dried in an oven at the temperature of 50oC for one 

week to remove the moisture. The seeds were then ground by a 

blender MX-337 (Panasonic Malaysia Sdn Bhd).  

 

2.2  Supercritical CO2 Extraction 

 

A schematic diagram of SFE apparatus for extraction of 

S.mahagoni seed is illustrated in Figure 1. The ground sample of 

5 g was placed in an extractor vessel. The extracts were collected 

in a glass vial placed in the separator at ambient temperature and 

pressure. A flow rate of CO2 was 2 mL/min. The investigated 

values of pressure, temperature, and particle size were varied 

from 20 to 30 MPa, 40 to 60oC, and 0.25 to 0.75 mm, 

respectively. After each extraction, the obtained extract was 

placed into glass vials, sealed and stored at 4oC to prevent any 

possible degradation. 

 

 
 

Figure 1  A schematic design of the supercritical fluid extraction (SFE) unit 

 

 

2.3  Experimental Design 

 

Box-Behnken design (BBD) was applied to determine the 

optimum extraction pressure, temperature and particle size for 

supercritical CO2 extraction of Swietenia mahagoni seed. The 

pressure (A), temperature (B) and particle size (C) were 

independent variables studied to optimize the oil yield (Y) from 

S.mahagoni seed. The CO2 flow rate was constant. 

  Box-Behnken design requires an experiment number (N) 

according to the following equation: 

 

  N = 2k(k-1)+cp                 (1) 

Where k is the factor number and cp is the replicate number of 

the central point. There are three levels of design (-1, 0, +1) 

with equally spaced intervals between these levels. The 

investigated factors and tested levels are reported in Table 1. 
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Table 1  The coded and uncoded levels of independent variables used 

in RSM design 

 

Independent 

variable 

Symbol Level 

Low (-1) Middle 

(0) 

High (+1) 

Pressure (MPa) A 20 25 30 
Temperature 

(oC) 

B 40 50 60 

Particle size 
(mm) 

C 0.25 0.50 0.75 

 

  The experimental data were fitted with the second order 

response surface model of the following form: 

(2) 

 

  Where y is the response (extraction yield in %); β0, βj, βjj, 

βij are constant coefficients of intercept, linear, quadratic, and 

interaction terms, respectively;and Xi and Xj are coded 

independent variables (pressure, temperature or particle size). 

Analysis was performed using commercial software Design-

Expert® v.6.0.4  

  The analysis of variance (ANOVA) was also used to 

evaluate the quality of the fitted model. The test of statistical 

difference was based on the total error criteria with a 

confidence level of 95%. 

 

 

3.0  RESULTS AND DISCUSSION 

 

3.1  Response surface analysis 

 

Since various parameters potentially affect the extraction 

process, the optimization of the experimental conditions 

represents a critical step in the application of SFE method. The 

experimental design was adopted on the basis of coded level 

from three variables (Table 1), resulting in seventeen 

simplified experimental sets (Table 2) with five replicates for 

the central point. The selected factors were extraction 

temperature (in oC), pressure (in MPa) and particle size (in 

mm) with consideration that these factors are important in the 

extraction process.  

  The effect of linear, quadratic or interaction coefficients 

on the response was tested for significance by analysis of 

variance (ANOVA). The degree of significance of each factor 

are represented in Table 3 by its probability (Prob) > F. When 

the values of “Prob>F” was less than 0.05, the factor has a 

significant influence on the process (for a confidence level of 

95%) [23]. 

  Table 3 shows that the linear term of pressure and particle 

size had significant effect on the extraction yield, followed by 

the quadratic term of temperature and interaction of pressure 

and temperature. Meanwhile, the interaction between pressure 

and particle size, and temperature and particle size on the yield 

of S. mahagoni seed extraction were not statistically significant 

(“Prob>F” more than 0.05). 

 

 

 

Table 2  Experimental matrix and values of the observed response 

 

Run Pressure 

(MPa) 

Temperature 

(oC) 

Particle 

size (mm) 

Coded 

pressure 

variable 

Coded 

temperature 

variable 

Coded 

particle 

size 

Observed 

extraction 

yield (%) 

1 20 40 0.50 -1 -1 0 15.52 

2 30 40 0.50 +1 -1 0 15.47 

3 20 60 0.50 -1 +1 0 7.76 
4 30 60 0.50 +1 +1 0 20.68 

5 20 50 0.25 -1 0 -1 6.19 

6 30 50 0.25 +1 0 -1 11.64 
7 20 50 0.75 -1 0 +1 10.97 

8 30 50 0.75 +1 0 +1 18.26 

9 25 40 0.25 0 -1 -1 5.07 
10 25 60 0.25 0 +1 -1 13.42 

11 25 40 0.75 0 -1 +1 16.35 

12 25 60 0.75 0 +1 +1 17.74 
13 25 50 0.50 0 0 0 11.12 

14 25 50 0.50 0 0 0 10.91 

15 25 50 0.50 0 0 0 10.52 
16 25 50 0.50 0 0 0 11.04 

17 25 50 0.50 0 0 0 10.82 

 

 

  The second order polynomial model used to express the 

total extraction yield as a function of independent variables (in 

terms of coded values) is shown below: 

 

Y=149.623-5.381A-3.861B+45.736C+0.051A2+0.026B2- 

6.636C2+0.064AB+0.368AC-0.696BC                                (3) 

 

 

 

 

 

 

 

 

 

 

 

Table 3  Response surface of yield obtained by SC-CO2 

 

Variable Coefficients Standard 

error 

F-

value 

Prob>F 

Intercept 

A 
B 

C 

A2 
B2 

C2 

AB 
AC 

BC 

10.88 

3.20 
0.90 

3.38 

1.30 
2.68 

-0.41 

3.24 
0.46 

-1.74 

0.78 

0.62 
0.62 

0.62 

0.85 
0.85 

0.85 

0.87 
0.87 

0.87 

 

26.94 
2.12 

29.94 

2.33 
9.92 

0.24 

13.82 
0.28 

3.98 

 

0.0013 
0.1884 

0.0009 

0.1707 
0.0162 

0.6406 

0.0075 
0.6142 

0.0863 
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Table 4  Analysis of variance (ANOVA) for the response surface 

quadratic model for the yield of S.mahagony seed obtained by SC-CO2 

extraction 
 

Source Sum of 

squares 

Degree 

of 

freedom 

Mean 

square 

F-

value 

Prob>F 

Model 

Residual 

Lack of 
fit 

Pure 
error 

Total 

273.67 

21.30 

21.09 
0.22 

294.98 

9 

7 

3 
4 

16 

30.41 

3.04 

7.03 
0.054 

9.99 

 

129.40 

0.0031 

 

0.0002 

 

 

  Analysis of variance (ANOVA) results of the model are 

shown in Table 4. The regression model for the oil yield was 

significant with “prob>F” of less than 0.05 and satisfactory 

coefficient of determination (R2) of 0.9278. Three dimensional 

(3D) response surface plots as a function of two factors while 

keeping other factors at fixed levels are helpful in 

understanding the effect on the response and the interaction 

effects of these two factors [27]. Thus, in order to gain a better 

understanding of the influence of independent variables and 

their interactions on the dependent variable, 3D response 

surface plots for the measured responses were produced based 

on the model equation (3) in this study. Figure 2-4 show the 3D 

response surface plots as the functions of two variables with 

another variable is kept constant at the center level. 

  Figure 2 illustrates the response surface and contour plot 

for the influence of pressure and temperature on the yield of oil 

for a fixed 0.50 mm particle size. The yield increased at lower 

pressure and temperature. Lower pressure had a positive linear 

effect on the oil yield. As the pressure was raised, the density 

of SC-CO2 would increase, resulting in enhanced solubility of 

SC-CO2. However, there was a negative quadratic effect at 

high pressure (Table 3). A possible reason was that highly 

compressed CO2 facilitates solute-solvent repulsion [18]. Thus, 

high pressure is not always recommended, as it can potentially 

induce complex extraction and complicate the analysis [27]. 

The effect of particle size was not important on the total extract 

yield for particle size of 0.75 mm; however the oil yield 

increased by increasing particle size (Figure 3). Particle size 

needs to be evaluated case by case based on the type of material 

to be processed. In the case of spice and seeds processing, 

particle size is generally between 30 and 60 Mesh [28]. 

According to previous investigations [29, 30], we came to a 

conclusion that particle size has no influence on the extraction 

rate in the two outermost cases: fine milled material and 

coarsely ground plant material. Effects of temperature and 

particle size on the oil yield at a fixed pressure of 25 MPa are 

shown in Figure 4. Particle size had positive linear effects on 

the yield, while the interaction between particle size and 

temperature was negatively correlated with yield.  

  It was more difficult to predict the influence of 

temperature on SC-CO2 extraction than for pressure because 

temperature has two opposing effects on the yield of oil. As the 

temperature increases, the density of CO2 decreases, which 

leads to a reduced solvent power. Conversely, higher 

temperature increases the solute vapour pressure, resulting in 

enhanced SC-CO2 solubility. Hence, the solubility of SC-CO2 

is inclined to increase, remain constant, or decrease with 

increasing temperature at constant pressure, depending 

whether solute vapour pressure or solvent density dominates 

[17, 31]. 

 

 
 

Figure 2  Surface plot of oil yield from S.mahagoni as a function of pressure and temperature at constant particle size of 0.50 mm 

 

 
 

Figure 3  Surface plot of oil yield from S.mahagoni as a function of pressure and particle size at constant temperature of 50oC 



19                                                   Liza Md Salleh et al. / Jurnal Teknologi (Sciences & Engineering) 67:1 (2014), 15–20 

 

 

 
 

Figure 4  Surface plot of oil yield from S.mahagoni as a function of temperature and particle size at constant pressure of 25 MPa 

 

 

3.2  Optimization of Extraction Parameters 

 

In general, reducing the independent variable will optimize the 

ratio of oil yield to production cost. The independent variable 

was further minimized for optimum oil yield using the 

numerical optimization function of the Design Expert 

programme. The numerical range specified was set to minimize 

temperature between 40 and 60oC, pressure between 20 and 30 

MPa, and particle size between 0.25 and 0.75 mm, while 

maximizing oil yield to 5.07-20.76%. Design Expert 

programme indicated that for an oil yield of 20.76%, the 

optimum values for each independent variable were 

temperature of 55.29oC, pressure of 29.99 MPa, and particle 

size of 0.75 mm. Under these optimum conditions, the 

experimental value was 20.07%, which is in agreement with 

those predicted by Design Expert programme. 

 

 

4.0  CONCLUSION 

 

Current results showed that second-order polynomial model 

was sufficient to describe and predict the response variable of 

the Swietenia mahagoni seed yield obtained by SC-CO2 

extraction within the experimental ranges. The linear and 

quadratic terms of pressure, temperature and particle size 

significantly affected the yield. Based on the proposed model, 

the optimum conditions for Swietenia mahagoni seed yield 

within the experimental range were found to be 29.99 MPa, 

55.29 oC and 0.75 mm, and the predicted yield was found to be 

20.76 %. Under these optimum conditions, the experimental 

values were in agreement with the predicted values. 
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