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ABSTRACT 

 
 
 
 
 

The main purpose of the study is to investigate potentials of vertical 

machining centre to produce aspheric glass moulds. The use of vertical CNC 

machining centre is promoted in the study to make the process more flexible 

compared to dedicated aspheric generators used in optical industry. Glass moulds 

were rough ground and lapped using four diamond grinding cup wheels. Metal and 

resin bonded wheels were used in rough grinding and lapping operation with grit size 

of 151µm and 15µm respectively. Theoretical and experimental investigations of the 

grinding parameters and material behaviour that influence partial ductile mode have 

been discussed. Analysis encompasses the kinematics of the grinding process, 

characterization of grinding wheel topography, mechanism of material removal and 

conformity analysis between grinding wheel and glass mould. The grit depth of cut 

analysis explains the influence of the geometry of the conformity between wheel and 

glass mould, and which leads to some parametric relations in the grinding process. 

Image analysis technique was effectively used to observe the grinding wheel 

topography and ground surface. The experimental process results were compared 

with the available industrial samples and zone generation method for determining 

process performance. It was found that resin bonded wheel gave better surface finish 

and form accuracy as compared to metal bonded wheel and rest of other two samples 

in the rough grinding operation. Partial ductile machined area was observed in the 

lapping operation. Lapping results of the industrial samples were quite promising and 

closer to experimental samples results for both surface finish and form accuracy. It is 

concluded that overall performance of the process is very encouraging for producing 

glass moulds on the vertical CNC machining centre. 
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ABSTRAK 
 
 
 
 

 Tujuan utama kajian adalah menyelidiki keupayaan Pusat Pemesinan Pugak 

untuk menjana profail aspherik di atas acuan kaca. Rangsangan menggunakan mesin 

ini dalam kajian adalah untuk menjadikan proses pembuatan acuan kaca lebih 

mudahsuai berbanding dengan mesin khusus yang digunakan di dalam industri optik. 

Acuan kaca dicanai kasar dan dipelas dengan menggunakan empat roda pencanai 

intan yang mempunyai ikatan logam dan resin. Kedua-dua jenis ikatan digunakan 

diperingkat pencanaian dan pemelasan dengan saiz bijian 151µm dan 15µm masing-

masing. Kajian secara teori dan ujikaji terhadap parameter pencanaian dan 

pemelasan, dan kelakuan bahan yang mempengaruhi keadaan mod separa mulur juga 

dibincangkan. Analisis merangkumi kinematik proses pencanaian, pencirian 

permukaan roda pencanai, mekanisma pembuangan bahan dan analisis kesahan 

sentuhan roda pencanai dengan permukaan acuan kaca juga diterangkan. Analisis 

kedalaman pemotongan mengesahkan bahawa keberkesanan sentuhan antara 

permukaan roda pencanai dan acuan mempunyai perhubungan parametrik dalam 

proses pencanaian. Sementara teknik analisis imej telah digunakan secara berkesan 

bagi melihat topografi roda pencanai dan permukaan canaian. Keputusan ujikaji telah 

dibandingkan dengan sampel sediada dari industri dan kaedah penjanaan secara zon 

untuk menentukan prestasi setiap proses. Didapati bahawa roda pencanai ikatan resin 

menghasilkan kemasan permukaan dan ketepatan bentuk/profail yang lebih baik 

berbanding dengan roda pencanai ikatan logam dan dari kedua-dua sampel industri 

dan kaedah penjanaan secara zon semasa operasi mencanai kasar. Kawasan 

pemesinan separa mulur dapat ditemui dalam sampel yang dipelas. Keputusan 

mempelas bagi sampel dari industri didapati sangat menggalakan dan sangat hampir 

dengan keputusan sampel yang diperolehi dari ujikaji dalam kedua-dua pengukuran 

kekasaran permukaan dan juga ketepatan profail. Dapat disimpulkan bahawa prestasi 

umum proses penjanaan dan pemelasan bagi menghasilkan acuan gelas dengan 

menggunakan Pusat Pemesinan Pugak adalah sangat menggalakkan.  
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CHAPTER 1  

 

 

 

 

RESEARCH OVERVIEW 

 

 

 

 

1.1 Introduction 

 

 

For an astonishingly large number of people in poor countries, uncorrected 

vision prevents them from doing the things some of us take care for granted, like 

reading street signs or comparing advertisements to decide which market has the best 

price. According to World Health Organization, as many as billion peoples need 

vision correction but will never get it. Eyeglasses are scarce in developing nations 

because they cost too much for the average person, some time more costly than 

average monthly income, causing just few peoples qualified to diagnose eye 

problems and then provide the proper corrective lenses. In addition to this today, the 

optical industry requires aspheric optics not only for the visible spectrum, but also 

for high power and short wavelength radiation (eg X-rays, etc). At these 

wavelengths, a great necessity exists for aspheric surfaces on brittle materials, 

presenting the challenge of producing such complex optics as quickly as possible and 

at the lowest possible cost. This research is mainly dedicated towards the efforts for 

manufacturing the optical lenses with the use of general purpose vertical machining 

centre to avoid the dependency on dedicated ultraprecision machining centres. The 

present trend of the researchers and industrial practice was studied to identify the 

requirements for flexible and less costly manufacturing of optical lenses. The lens 
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manufacturing could be the new horizon for small and medium scale industries if 

they could manufacture optical lenses with their existing setup. The final outcome 

of the research could be useful to convince such medium scale industries to step in 

optical lens manufacturing. 

 

 

 

 

1.2     Research Background 

 

 

Options for machining brittle materials like glass or silicon have always 

been scares. Cutting tools for the machining of glass are limited. Diamond is the 

only cutting material which has been used effectively for machining glass. The use 

of diamond for cutting glass can be found back in centuries as an example. For 

instance, optical lenses are manufactured under different precision machining 

levels and generally it can be sub divided into diamond turning and diamond 

grinding.  

 

 

However, advances in the precision machining of brittle materials have led to 

the discovery of a "ductile regime" of operation in which material removal is by 

plastic deformation. Fracture mechanics predicts that even in brittle solids, material 

can be removed by the action of plastic flow, as is the case in metal, leaving crack 

free surfaces when the removal process is performed at less than a critical depth of 

cut (Puttick et al., 1989). It means that under certain controlled conditions, it is 

possible to machine brittle materials like ceramics and glass using single or multi 

point diamond tools so that material is removed by plastic flow, leaving a smooth 

and crack-free surface. The diamond turning of germanium by Blackley and 

Scattergood (1991), diamond turning of silicon by Yan et al (2002), and diamond 

grinding of BK-7 glass by Bifano et al. (1991) using expensive ultra-precision 

machine tools have demonstrated how ductile streaks can be generated on hard, 

brittle materials when they are machined in a ductile mode. It has been reported that 

almost 100% ductile mode machining is possible when machining hard materials 
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using a well defined geometry of single point single crystal diamond tools on a rigid 

ultraprecision turning machine (Venkatesh et al., 1995). Instead of fully ductile 

mode, partial ductile mode grinding is possible when grinding hard and brittle 

materials on conventional Computer Numerical Control (CNC) machining centre 

using diamond cup wheels. Previous studies indicated that getting partial ductile 

streaks on the ground surface is a much better deal than a good surface finish as the 

former from polishing experience shows that saturation has taken place with the 

latter (Zhong and Venkatesh, 1995). Previous research work shows that in addition to 

ductile mode grinding and conventional fracture mode grinding, the intermediate 

mode of grinding, microcrack grinding, can also yield good results at a low cost. 

Microcrack grinding can also be described as partial ductile grinding. The main idea 

for using general purpose machine like Vertical Machining Centre (VMC) for 

aspharising is to reduce the cost of the final product. 

 

 

In the case of grinding, finishing post processes like polishing and lapping are 

usually found to be more costly than other machining processes because of low their 

per unit volume of material removal, and so its use tends to be looked upon as a 

necessary evil. Partial ductile grinding is a more economical technology, where the 

ground surface can be directly polished without the intervention of the lapping 

process. The brittle materials can be ground in partial ductile mode on a CNC 

machining center. Polishing time can also be reduced substantially as the amount of 

ductile streaks can be increased in partial ductile grinding (Ong et al, 1994; 

Venkatesh et al, 1995). With conventional grinding machines, less than 90% ductile 

mode grinding is achievable and therefore the products require subsequent polishing 

(Zhong and Venkatesh, 1995). 
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1.3     Problem Statement 

 

 

Researchers and manufacturers have put in a lot of efforts achieving low 

tolerances, better surface finish, and lower subsurface damage at reduced cost. In 

order to reduce the total manufacturing time, it is preferable to obtain better 

milled (rough ground) surfaces, even if it takes a little longer milling time, and 

to reduce the polishing time and subsequently product cost. Various problems 

reported by researchers and industry for producing aspheric lenses are as 

follows: 

 

 

a) Uneconomical ultraprecision machining 

 

 

It has been reported that ultraprecision as well as conventional grinding has 

been used to machine various profiles on hard and brittle materials. An 

ultraprecise grinding machine, capable of producing nanometric relative 

movements between the distributed cutting edges and work is required for 

generating aspheric surfaces by grinding. Fully ductile mode grinding on these 

materials is feasible when using high rigid ultraprecision machines, which 

leads to no polishing but the process is found to be relatively too slow and too 

costly for the products requiring less precision like ophthalmic lenses. 

Conventional grinding has advantages over ultraprecision grinding with respect 

to machining cost factor, able to machine at higher material removal rate but at 

the marginal expense of form accuracy (Izman, 2004). 

 

 

b) Need of low cost machining 

 

 

Since grinding is the critical operation among the abrasive machining 

processes (lapping and polishing) for removing material from hard, brittle 

components, there is an obvious need to develop a low cost machining 
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technique that can minimize the subsurface damages of hard, brittle 

materials during machining and at the same time generate abundant amount 

of ductile streaks on the eventual machined workpieces. 

 

 

c) Need of flexible machining and less setup time 

 

 

The industrial procedures to manufacture aspheric lenses are employing very 

simple but special purpose machines. These machines are mass production 

machines capable of giving continuous output. The flexibility of the production 

system is the main problem faced by the industry working with these machines.  

These machines require very long setup time for small change in lens design. 

Some time it is not at all possible for such machines to incorporate such design 

changes in the lens geometry. In addition to this, the machine meant for 

aspheric generation can not produce toroidal lenses if requirement arise. 

 

 

d) Specialized manufacturing 

 

  

The present trend of the general machine shops of mold manufacturers has 

not been diverted towards glass moulds and lens manufacturing. The reason 

behind this fact may be the highly classified technology for lens 

manufacturing and lack of knowledge for machining the brittle materials like 

glass on general industrial platform.   
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1.4     Objective of the Study 

 

 

The objective of the research is as follows: 

 

 

1. To propose a new method of generating aspheric surface on the glass mould 

using conventional vertical machining centre.  

 

 

2. To evaluate the performance of new method in terms of form accuracy and 

surface finish. 

 

 

3. To compare the new generation process with the industrial practice and zone 

generation method in both, grinding and lapping operations.  

 

 

 

 

1.5 Significance of the Study 

 

 

  The main emphasize in this project has been given on the general purpose 

accessories which are easily available in the market at low cost. The lens making 

industries are using highly specialized purpose machines like LOH aspheric 

generators for making aspheric lenses. The grinding wheels used in these machines 

are also specially designed for the typical geometry of the lens. Little variation in the 

lens geometry takes considerable time to set these special purpose machines. In 

addition to this, the machine meant for aspheric generation can not produce toroidal 

lenses if requirement arise. Typical manufactured product that could be produced by 

this method is the surface of the glass mould to manufacture plastic Fresnel lenses. 

These lenses are having variety of applications; some require high degree of 

accuracy such as lenses in the mobile camera whereas other could be liberal in 
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tolerance such as binocular lenses. The main idea of the research is to produce such 

general purpose lens application by using the general purpose machine for 

manufacturing. 

 

 

 

 

1.6 Scope of the Study 

 

 

The research was confined to the following limits: 

 

 

1. The work material used was optical BK7 glass. 

 

 

2. Grinding operation was carried out on a vertical machining centre. 

 

 

3. Commercially available diamond cup grinding wheels with resin and metal 

bond were used in the study for grinding and lapping operation. Grit sizes of 

15µm and 151µm were used in the experiment for lapping and rough grinding 

respectively. 

 

 

4. Unigraphics NX2 was used to model the parabolic profile and to produce 

aspheric grinding path for aspheric surface generation. 

 

 

5. Scanning Electron Microscopy (S.E.M) and Optical Microscopy were used to 

analyze the surface. Formtracer CH5000 along with Formpak profile analysis 

software was used for surface roughness and form analysis. Image analysis 

was done with KS300 and VideoTest V5 imaging software. 
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6. A special fixture was developed to hold the workpiece and to provide 

additional rotation axis through modification of existing rotary table. 

 

 

 

 

1.7 Overview of the Methodology 

 

 

The overall methodology used for the experimentation to achieve the above 

objectives is shown in Figure 1.1. The experiments planned involve the use of 

151µm and 15µm grit size grinding wheels. The rough grinding and lapping 

operations are planned sequentially to generate aspheric surface on the glass moulds. 

The parameters for the grinding are planned in accordance with the industry and zone 

generation method for evaluating the process performance. The results obtained are 

compared with the industrial samples and zone generation method results. Detailed 

qualitative and quantitative analysis was planned to examine surface texture of the 

samples. 

 

 

 

 

1.8 Organization of the Thesis 

 

 

The new technique of aspheric surface generation is developed with use of 

general vertical machining centre. The capability of vertical machining centre is 

evaluated for optical lens manufacturing. This chapter begins with the background 

of the problem that covers the issue leading to the problem statement. This is 

followed by the problem statement, objective of the study, significance of the 

study, scope of the study, overview of the methodology and ends with the 

organization of this thesis. The second chapter gives broad view of the various 

parameters of the optical grinding process, covering basic lens geometry with the 

application of aspheric lenses, various material removal mechanisms in grinding,  
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Figure 1.1:  Schematic diagram summarizing the experimental approach 
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and type of grinding wheels used in optical industry. Third chapter narrowed to the 

various aspheric surface generation processes. The aspheric generation processes 

are divided in modification of conventional process and ultraprecision methods. 

Fourth chapter is describing the pre-experimental work and methodology. Detail 

plan of experiments is described in this chapter. Chapter five is the results of the 

experiments. Thesis ends with conclusions drawn for this research. 
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