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ABSTRACT 
 
 
 
 

Polypropylene is an outstanding thermoplastic with respect to its attractive 
combination of low cost and extraordinary versatility in terms of properties and 
applications. However, the increasing demand of polypropylene for various 
applications requires greatly improved physical and mechanical properties. Recently, 
the addition of nanoscopic fillers of high anisotropy instead of conventional 
reinforcing agents renders the polymer/nanoclay nanocomposites to exhibit 
interesting structure-property relationships and promising application perspectives. 
However, the low temperature impact properties polypropylene nanocomposites limit 
some of its application. In order to achieve improved impact properties, impact 
modifiers polyethylene octene known as polyolefin elastomer have been added to 
toughen the polypropylene nanocomposites. Rubber toughened polypropylene 
nanocomposites containing difference content of organoclay and polyethylene octene 
were compounded in a twin-screw extruder. The mechanical properties of the 
nanocomposites were determined on injection-molded specimens in tensile, flexural 
and impact tests. From the tensile and flexural tests, the optimum loading of 
organoclay in nanocomposites was found to be 6 wt%. Maleic anhydride modified 
polypropylene was used as compatibilizer to mediate the polarity between the clay 
surface and PP. The modulus and strength of polypropylene nanocomposites were 
improved in the presence of polypropylene grafted maleic anhydride and achieved 
optimum modulus and strength at a compatibilizer content of 6wt% for the blend. 
The morphology of the nanocomposites was studied by scanning electron 
microscopy and X-ray diffraction. X-ray diffraction results showed the formation of 
nanocomposites as the organoclay was intercalated by polypropylene 
macromolecules. Incorporation of polypropylene grafted maleic anhydride could 
improve the degree of intercalation and hence resulting in better dispersion in the 
polypropylene matrix. Izod impact tests indicated that the polyethylene octene and 
maleated polyethylene octene were very effective in converting brittle polypropylene 
nanocomposites into tough nanocomposites. Scanning electron microscopy study 
revealed a two-phase morphology which was clearly visible for all systems and the 
droplets of elastomer dispersed uniformly within the blends. Thermogravimetric 
analysis showed that thermal stability of nanocomposites significant increased with 
the incorporation of small amounts of organoclay in a platelet form. The essential 
work of fracture was used to evaluate the fracture toughness of the rubber toughened 
polypropylene nanocomposites. Essential work of fracture measurements indicated 
that the specific essential work of fracture decreased with increasing organoclay 
content. However, additions of polyethylene octene and maleated polyethylene 
octene are beneficial in enhancing the specific essential work of fracture of the 
polypropylene nanocomposites.  
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ABSTRAK 
 
 
 
  

Polipropilena merupakan salah satu termoplastik yang terunggul dari segi kos 
rendah, sifat-sifat cemerlang and penggunaan yang luas. Namum, peningkatan sifat-
sifat fizikal and mekanikal amat diperlukan atas permintaan yang semakin meningkat. 
Kini, penggantian pengisi lazim oleh pengisi bersaiz nanometer menghasilkan  
polimer/clay nanokomposit. Nanokomposit ini memberikan hubungan struktur-sifat 
yang unik and menjaminkan penggunaannya dalam pelbagai sektor. 
Walaubagaimanapun polipropilena nanokomposit mempunyai sifat hentaman pada 
suhu rendah yang lemah telah menghadkan applikasinya. Oleh itu, pengubahsuai 
hentaman polietilena oktena, juga dikenali sebagai elastomer poliolefin digunakan 
untuk meningkatkan sifat hentaman polipropilena nanokomposit. Polipropilena 
nanokomposit terubahsuai hentaman mengandungi organoclay and polietilena oktena 
disediakan menggunakan pengadun skru kempar. Sifat-sifat mekanikal 
nanokomposit diuji melalui ujian tegangan, lenturan and hentaman Izod. Kajian 
tegangan and lenturan mendapati 6 wt% organoclay adalah pemuatan yang optimum. 
Selain itu, penambahan polipropilena  cangkuk maleik anhydride dapat 
meningkatkan lagi modulus dan kekuatan polipropilena nanokomposit disebabkan 
polipropilena  cangkuk maleic anhydride dapat mengantarai perbezaan kekutuban 
antara polipropilena dan permukaan clay. Modulus and kekuatan nanokomposit 
mencapai takat optimum dengan pemuatan polipropilena  cangkuk maleic anhydride 
pada 6 wt%. Mikroskop imbasan elektron and pembelauan X-ray digunakan untuk 
mengkaji sifat morfologi nanokomposit. Pengujian pembelauan X-ray menunjukkan 
pembentukkan nanokomposit dimana makromolekul polipropilena telah interkalari 
antara organoclay. Penambahan polipropilena cangkuk maleic anhydride dapat 
meningkatkan darjah penginterkalarian bagi organoclay dalam matriks polipropilena. 
Ujian hentaman Izod menunjukkan penambahan polietilena oktena cangkuk maleik 
anhydride lebih efektif bagi menukarkan polipropilena nanokomposit rapuh kepada 
nanokomposit yang kuat. Manakala ujian mikroskop imbasan elektron menunjukkan 
morfologi dua fasa dan partikel elastomer terserak sama rata bagi semua sistem. 
Analisis termogravimetrik menunjukkan kestabilan terma nanokomposit nyata 
meningkat dengan penambahan sedikit amaun organoclay yang berbentuk ptatelet. 
Kekuatan retakan polipropilena nanokomposit terubahsuai hentaman diuji dengan 
kaedah Essential work of fracture. Ujian Essential work of fracture menunjukkan 
nilai Essential work of fracture khusus menyusut dengan pertambahan kandungan 
organoclay dalam nanokomposit. Disebaliknya, penambahan polietilena oktena dan 
polietilena oktena cangkuk maleik anhydride bermanfaat dalam mempertingkatkan 
nilai nilai Essential work of fracture khusus bagi polipropilena nanokomposit.    
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CHAPTER 1 

 
 
 
 

INTRODUCTION AND BACKGROUND 

 
 
 
 

1.1  Current Perspectives and Future Prospects: An Overview 

 
 
 Since the discovery of synthetic polymers during the early 1900’s, 

compounding of polymers with inorganic fillers and fibers was developed as a 

versatile route leading to novel polymeric materials with improved thermal and 

mechanical properties with attractive cost/performance ratio. The field of materials 

science has lately begun to focus on the quest for composite materials that exhibit the 

positive characteristics of their initial components. Worldwide, there has been a new 

and intense desire to tailor the structure and composition of materials on the 

nanometer scale. Thus we are seeing the introduction of a new and improved class of 

composites, the nanocomposites. 

 
 
 
 
1.1.1    Nanocomposites 

 
 
Nanocomposites were first referenced as early as 1950, a synthetic polymer-

clay nanocomposites were first reported as early as 1961, when Blumstein 

demonstrated polymerization of vinyl monomer intercalated into montmorillonite 

clay and polyamide nanocomposite were reported as early as 1976 (Ryan et al., 2001; 

Chetan, 2000). However, it was not until researchers from Toyota Central Research 

and Development Laboratories (CRDL) in Japan in the late 1980s began a detailed 

examination of polymer/layered silicate clay mineral composites that 
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nanocomposites became more widely studied in both academic and industrial 

laboratories.  

 

In recent years polymer/clay nanocomposites have attracted great interest, 

both in industry and in academia, because they often exhibit remarkable 

improvement in materials properties when compared to virgin or conventional micro-

composites.  Today, more than 70 companies, government agencies and academic 

institutions have been identified as having research and development (R&D) 

activities (Agag et al, 2000, Chetan, 2000). These nanocomposites exhibit superior 

properties such as enhanced mechanical properties, reduced permeability, improved 

thermal stability and flame retardancy (Ray and Okamoto, 2003; Alexandre and 

Dubois, 2000; Ketan, 2002).  

 

The total global market value for nanocomposites nears three million pounds; 

of which two million pounds are nanoclay-reinforced polyamides (nylon) produced 

by Unitika and Ube Industries in Japan for automotive and packaging application 

respectively. The remaining one million pounds are carbon nanotube-filled 

PPO/nylon alloy produced in North America for automotive body parts. Each of 

these developing product technologies is poised for strong growth over the next ten 

years. Market projections show that the demand in each region will grow at 

comparable rates from 2004 through 2009. The market will reach nearly 1.2 billion 

pounds in 2009, of which one billion pounds will be nanoclay reinforced compounds 

and 160 million pounds will be carbon nanotube-filled products (Nanocomposites, 

1999).  

 

Nanocomposites technology is applicable to a wide range of polymers, 

cutting across the materials classes of thermoplastics, thermosets, and elastomers. 

Over the next ten years, nanoclay composites of nearly 20 polymers are expected to 

be commercialized (Chetan, 2000).  Therefore, nanocomposites technology is 

recognized as one of the promising avenues of technology development for the 21st 

century. Nanocomposites are currently used in two commercial applications: 

automotive under hood components and food packaging (Sherman, 1999). The goals 

are physical, mechanical and thermal properties enhancement and reduced 

permeability. Nylon-based nanocomposites were the first commercial materials to 
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emerge, and there is now a frenzy of activity aimed at nano-reinforcing commodity 

thermoplastics such as polypropylene (PP) and polyethylene terephtalate (PET) 

(Ketan, 2002). These end markets will continue to be the primary outlets for 

nanocomposites over the next ten years. Other markets, including non-food 

packaging and a range of other durables markets, will begin to adopt nanocomposites 

materials by 2004, and significant growth in demand will occur through 2009 

(Chetan, 2000).   

 
Polymer/layered silicate nanocomposites are currently prepared in four ways: 

in-situ polymerization, intercalation from a polymer solution, direct intercalation by 

molten polymer (melt compounding) and sol-gel technology. Direct polymer melt 

intercalation is the most attractive and most R&D works focused because of its low 

cost, high productivity and compatibility with current processing techniques (i.e. 

extrusion and injection molding) (Alexandre and Dubois, 2000). Besides that, direct 

polymer melt intercalation is an effective technology for polyolefin-based 

nanocomposites, especially for polypropylene based nanocomposites.  

 
PP based nanocomposites constitute a major challenge for industry since they 

represent the route to substantially increase the mechanical and physical properties of 

one of the most widely thermoplastics. The dispersal of clay nanolayers into the 

nonpolar polyolefin PP systems proves to be a challenge since the polarity of 

organoclay does not match well with such polymers. Recently, Toyota research 

group (Kawasumi et al., 1997; Kato et al., 1997; Hasegawa et al., 1998) melt-

processed the mixture of stearylammonium-exchanged montmorillonite, maleic 

anhydride modified polypropylene oligomer and homopolypropylene to obtain a 

successful polypropylene-clay hybrid wherein a larger fraction of the clay nanolayers 

were found to be exfoliated. 

 
 
 
 
1.1.2 Rubber-Toughened Thermoplastics 

 
 
Recently introduced thermoplastic elastomers and engineering thermoplastics 

are example of the success of polymer blend technology has also become an 
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increasingly important technique for improving the cost performance ratio of 

commercial polymers (Azman Hassan et al, 2001, Ching, 2001). Blending of 

thermoplastics with elastomer has been commercialized as rubber-toughened plastics 

(RTTP) or as thermoplastics elastomer (TPE). Generally, if a relatively large portion 

of a the hard plastics is used, the composition can be used as an impact resistance 

plastics; whereas, if a relatively large amount of rubbery phase is used, the blend will 

be soft and have at least some of the properties of an elastomer (Ibrahim and Dahlan, 

1998; Okada et al, 1999). 

 

The first impact-modified polymer was polystyrene, patented by 

Ostromislenky in 1927 described the process for making toughened polystyrene by 

polymerizing a solution of rubber in styrene monomer. This material demonstrated 

high impact strength, but was a closer to a thermoset than a thermoplastic. Although 

the polymer was never commercially produced, the discovery provided the focus on 

rubber modified polystyrene. In 1948 the first commercial impact modified 

polystyrene was introduced by the Dow Chemical Company (Bucknall, 1977; Lynch, 

2000). The polymer was produced by a batch polymerization of styrene monomer 

and styrene-butadiene rubber (SBR) to produce high impact polystyrene (HIPS). An 

improved continuous HIPS process was introduced in 1952. In 1957, impact 

modified polyvinylchloride was commercially produced into marketplace. Since 

then, RTTP blends have been the fastest growing segment of the plastics industry. 

 

 Recently, the blending of various rubbers with PP to provide an improvement 

in its properties, especially in impact resistance at low temperature and at any given 

stiffness, has been widely studied. Articles published by Liang and Li (1999) and 

Utracki (1999) had reviewed the advances in mechanisms toughening of 

PP/elastomer blends in the last 20 years. Blending PP with an elastomeric modifier 

provides a simple way to significantly improve the impact resistance of the base 

resin. Impact modified polypropylene is in the class of thermoplastic olefins (TPO). 

TPOs have been the fastest growing segment of the thermoplastic elastomers for the 

last ten years. The automotive industry is one of the major growth market for TPOs 

with new applications such as interior trim and exterior fascia. To date, many rubber 

or elastomers are compatible with PP has been developed and studied from the most 

frequently used ethylene propylene rubber (EPR) and ethylene propylene diene 
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monomer rubber (EPDM) to the relatively new type of impact modifier known as 

polyethylene octene (POE) copolymer.  

1.2 Problem Background 

 
 
 One of the most important aspects in the materials development of 

engineering thermoplastics is to achieve a good combination of properties and 

processability at moderate cost. In the development of engineering thermoplastics as 

far as mechanical properties is concerned, the main target is to strike a balance of 

stiffness, strength and toughness. There are a few approaches that have been 

identified as potential routes to achieving this goal (Mohd Ishak et al, 1999): 

 

i) Blending of thermoplastics with thermoplastic with elastomers as major 

components to form thermoplastic elastomers (TPE) or rubber-toughened 

thermoplastics (RTTP). 

ii) The inclusion of fillers or fiber reinforcement into thermoplastic matrices 

to form thermoplastics composites. 

 

 However these approaches have their own potential and limitation. Generally, 

the inclusion of elastomer as an impact modifier will result in a significant 

improvement in toughness but at the expense of strength and stiffness. On the 

contrary the presence of fillers or reinforcement such as glass fiber and carbon fiber 

in polymer leads to increase in stiffness and strength, but decrease in toughness. Thus 

the next logical approach to follow is to combine both filler or short fiber 

reinforcement and impact modifier into thermoplastic matrix (Mohd Ishak et al, 

1999). The strategy behind this approach is to develop a material which posses a 

significant improvement in toughness without sacrificing the desirable stiffness and 

strength properties.  

 

However, studies on the blending of thermoplastic (PP) with elastomers 

(POE) with the incorporation of nanofillers (org-montmorillonite) in the presence of 

compatibilizer (PPgMAH) has not yet been explored. Therefore, it is interesting to 

look at the system where rubber-toughened thermoplastics blends are combined with 

nanofillers.  
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1.3 Objectives 

 
 

The present work aims to develop new advanced polymeric composite 

materials namely rubber-toughened PP nanocomposites (RTPPNC). In this research, 

nanocomposites will be first prepared by adding nanoclay (MMT) to the PP with the 

presence of compatibilizer (PPgMAH) to form PP nanocomposites (PPNC). Then 

this material as a major component will be melt-mixed with elastomer.  

 

The main objective can further be divided into: 

 

i) To study the effect of organoclay concentration on the physical and 

mechanical properties of RTPPNC.  

ii) To study the effect of incorporating compatibilizer into RTPPNC on the 

physical and mechanical properties. 

iii) To investigate the effect of elastomer concentration and functionality on 

the physical and mechanical properties of RTPPNC.  

iv) To determine the effect of organoclay and elastomer on the fracture 

toughness of the RTPPNC. 

 
 
 
 
1.4 Scopes 

 

In order to achieve the objectives of the research, the following activities 

have been carried out: 

 

1. Literature review  

Literature search on the latest development in the area of rubber-toughened 

thermoplastic composites and nanocomposites to ensure relevancy of the 

research 
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2. Sample preparation 

Sample preparation will be conducted via melt intercalation method. This 

involves: 

a) Twin-screw extrusion process to blend PP, elastomer, nanofiller and  

compatibilizer.  

b) Injection molding to prepare test specimen according standard. 

 

3. Physical and Mechanical properties study  

a) Density  

b) Tensile test 

c) Flexural Test 

d) Izod impact test 

e) Fracture Mechanics 

 

4. Sample characterization and morphological study. To characterize the 

RTPPNC, the following apparatus will be used: 

a) X-ray diffraction (XRD) 

b) Scanning electron microscopy (SEM) 

c) Differencial scanning calorimeter (DSC) 

d) Dynamic mechanical analysis (DMA) 

e) Thermogravimetric analysis (TGA) 

 

5. Rheological properties of the blends study by:  

a) Melt flow index 

b) Capillary rheometer 

 

6. Data analysis 

 

 



 189

 
 
 
 

REFERENCES 
 
 
 
 
Ahmadi, S.J., Huang, Y.D., Li, W. (2005). Fabrication and physical properties of  

EPDM–organoclay nanocomposites. Composites Science and Technology. 65: 

1069–1076. 

Akkapeddi, M.K. (2000). Glass fiber reinforced polyamide-6 nanocomposites.  

Polymer Composites. 21: 576-585. 

Alexandre, M., and Dubois, P. (2000). Polymer-layered silicate nanocomposites :  

preparation, properties and uses of new class of materials. Materials Science 

and Engineering. 28: 1-63. 

Alexandra, M., Dubois, P., Sun, T., Garces, J.M., and Jerome, R. (2002).  

Polyethylene-layered silicate nanocomposites prepared by the 

polymerization-filling technique: synthesis and mechanical properties. 

Polymer. 43: 2123-2132.   

Apoorva, P.S., Gupta Rakesh, K., Jones, J., Clifford, and Carlos, H. (2002).  

Flammability and mechanical properties of vinyl ester/clay nanocomposites. 

Annual Technical Conference Proceedings, Society of Plastics Engineers. 48: 

2270-2274.   

Ashter, A. (2002). Elastomeric Nanocomposites: Quantifying the Effect of Modified  

Montmorillonite Clays on Styrene-Ethylene-Butadiene-Styrene (SEBS). 

University of Massachusetts Lowell: Master of Science Thesis 

ASTM, ASTM E813-89: Standard Test Method for JIC, A Measure of Fracture  

Toughness in 1989 Annual Book of ASTM Standards, p. 7000, American 

Society for Testing and Materials, Philadelpia (1989). 

Arostegui, A., and Nazabal, J. (2003). New Super-tough Poly(butylenes  

Terephthalate) Materials Based on Compatibilized Blends with Metallocenic 

Poly(ethylene-octene). Polymer Advanced Technologies. 14: 400-408. 

Azhari, C.H., Zulkifli, R., Fatt, L.K., and Sahari, J. (2002). Interlaminar fracture  

properties of fibre reinforced natural rubber/polypropylene composites. 

Journal of Materials Processing Technology. 128: 33-37.  



 190

Azman Hassan, Ching, Y.C., and Sivaneswaran (2001). Rubber-Toughened  

Polymers: The Importance and Recent Development. Seminar on specialty 

additives/polymers for new decades, Shah Alam, Malaysia 

Azman Hassan, Wahit, M.U., and Ching, Y.C. (2003). Mechanical and  

morphological properties of PP/NR/LLDPE ternary blend—effect of HVA-2. 

Polymer Testing 22: 281–290. 

Bensason, S., Minick, J., Moet, A., Chum, S., Hiltner, A., and Baer, E. (1996).  

Classification of Homogeneous Ethylene-Octene Copolymers Based on 

Comonomer Content. Journal of Polymer Science: Part B: Polymer Physics. 

34: 1301-1316. 

Bensason, S., Nazarenko, S., Chum, S., Hiltner, A., and Baer, E. (1997). Elastomeric  

blends of homogeneous ethylene-octene copolymers. Polymer. 38: 3913-

3919. 

Biasci, L., Aglietto, M., Ruggeri, G., and Ciardelli, F. (1994). Functionalization of  

montmorillonite by methyl methacrylate polymers containing side-chain 

ammonium cations. Polymer. 35: 3296-3304. 

Bielefeld, Z.J., and Schwerzenbach, G.W. (1999). Collected Applications Thermal  

 Analysis: Thermoplastics. Mettler Toledo. 10. 

Billmeyer, F.W. Textbook of Polymer Science. John Wiley & Sons: A Wiley- 

Intersience Publication, 1984, 241. 

Boivin, K.C. (2000). The Effects of Polypropylene Type, Ethylene-Butene Type, and  

Filler on the Properties of Thermoplastic Olefin Blends. University of 

Massachusetts Lowell: Master of Science Thesis. 

Boucard, S., Ducheet, J., Gerard, J.F., Prele, P., and Gonzalez, S. (2003). Processing  

of polypropylene/clay hybrids. Macromolecules Symposiums. 194: 241-246. 

Broberg, K.B. (1971). Crack-growth criteria and non-linear fracture mechanics. J.  

Mech.Phys. Solids. 19: 407-418. 

Broberg, K.B. (1975). On stable crack growth. J. Mech. Phys. Solids. 23: 215-237.  

Brown, R. (1999). Handbook of Polymer Testing. Physical Methods. Marcel Dekker,  

Inc, New York, 782.  

Bucknall, C. B. (1977). Toughened Plastics. London, Applied Science, 9-20; 137- 

177; 286-289.  

Bureau, M.N., Perrin-Sarazin, F., and Ton-That, M.T. (2004). Polyolefin  



 191

Nanocomposites: Essential Work of Fracture Analysis. Polymer Engineering 

andScience. 44: 1142-1151. 

Brydson, J.A. (1989). Plastic Materials. 5th ed. London: Mid-County Press. Inc.196- 

241. 

Carriere, C.J. and Silvis, H.C. (1997). The Effects of Short-Chain Branching and  

Comonomer Type on the Interfacial Tension of Polypropylene-Polyolefin 

Elastomer Blends. Journal of Applied Polymer Science. 66: 1175-1181.  

Chan, W.Y.F., and Williams, J.G. (1994). Determination of the fracture toughness of  

polymeric films by the essential work method. Polymer. 34: 1666-1672. 

Chen, H.B., Karger-Kocsis, J., Wu, J.S. (2004). Effects of molecular structure on the  

essential work of fracture of amorphous copolyesters at various deformation 

rates.  Polymer. 45: 6375-6382.    

Chen, D.Z., Yang, H.Y., He, P.S., and Zhang, W. (2005). Rheological and extrusion  

behavior of intercalated high-impact polystyrene/organomontmorillonite 

nanocomposites. Composites Science and Technology. 65: 1593–1600. 

Cho, J.W., Logsdon, J., Omachinski, S., Qian, G., Lan, T., Womer, T.W. and Smith,  

W.S., Nanocomposites: A Single Screw Mixing Study of Nanoclay-filled 

Polypropylene. ANTEC 2000 Conference Proceedings, May 8-9, 2000. 

Orlando Florida, Society of Plastics Engineers (SPE). 2000.  58(1), 428. 

Choucihary, N.R. Chaki, T.K., Dutta, A. and Bhowmick, A.K. (1989). Thermal, X- 

ray and Dynamic Mechanical Properties of TPE NR/PE Blends. Polymer. 30: 

2047-2053.  

Choudhary, N,R, Chaki, T.K. and Bhowmick, A.K. (1991). Thermal Characterization  

of Thermoplastic Elastomeric Natural-Rubber-Polypropylene Blends. 

Thermochimica Acta. 176: 149-161.  

Ching, Y.C. (2001). Mechanical and Morphology Properties of impact Modified PP.    

Universiti Teknologi Malaysia. Master of Science Thesis.  

Chow, W.S., Mohd Ishak, Z.A., Karger-Kocsis, J., Apostolov, A.A., and Ishiaku,  

U.S. (2003). Compatibilizing effect of maleated polypropylene on the 

mechanical properties and morphology of injection molded 

polyamide6/polypropylene/ organoclay nanocomposites. Polymer. 44: 7427-

7440. 

Chow, W.S., Mohd Ishak, Z.A., Karger-Kocsis, J., Apostolov, A.A., Ishiaku, U.S.  



 192

(2004). The effect of organoclay on the mechanical properties and 

morphology of injection molded polyamide 6/polypropylene nanocomposites. 

Journal of Applied Polymer Science. 91: 175-189. 

Chow, W.S., Mohd Ishak, Z.A., Karger-Kocsis, J., Apostolov, A.A., Ishiaku, U.S.  

(2005a). Morphological and rheological properties of polyamide 6/ 

polypropylene/ organoclay nanocomposites. Macromolecular Materials and 

Engineering. 290: 122-127.  

Chow, W.S., Mohd Ishak, Z.A., Karger-Kocsis, J., Apostolov, A.A., Ishiaku, U.S.  

(2005b). Effect of maleic anhydride-grafted ethylene-propylene rubber on the 

mechanical, rheological and morphological properties of organocaly 

reinforced polyamide 6/polypropylene nanocomposites. European Polymer 

Journal. 41: 687-696. 

Cogswell F.N. Polymer Melt Rheology A guide for Industrial Practice, George  

Godwin, John Wiley, 1981. 

Crawford, R.J.(1987). Plastics Engineering. 2nd.ed.Oxford: Pergamon Press Ltd. 

140-144. 

D'Orazio, L., Mancarella, C. , Martuscelli, E., Sticotti, G., and Massari, P. (1993).  

Melt rheology, phase structure and impact properties of injection-moulded 

samples of isotactic polypropylene/ethylene-propylene copolymer (iPP/EPR) 

blends: influence of molecular structure of EPR copolymers. Polymer. 34: 

3671-3681. 

Da Silva, A.L.N., Tavares, M.I.B., Politano, D.P., Coutinho, F.M.B., and Rocha,  

M.C.G. (1997). Polymer Blends Based on Polyolefin Elastomer and 

Polypropylene. Journal of Applied Polymer Science. 66: 2005-2014. 

Da Silva, A.L.N., Rocha, M.C.G., Fernanda M.B., Bretas R.E.S., Scuracchio C.  

(2000). Rheological, Mechanical, Thermal, and Morphological Properties of  

Polypropylene/Ethylene-Octene Copolymer Blends. Journal of Applied 

Polymer Science. 75: 692-704. 

Da Silva, A.L.N., Rocha, M.C.G., Coutinho, F.M.B., Bretas, R.E.S. and Scuracchio,  

C. (2001). Rheological and Thermal Properties of Binary Blends 

Polypropylene and Poly(ethylene-co-l-octene). Journal of Applied Polymer 

Science. 79: 1634-1639. 

Da Silva, A.L.N., Rocha, M.C.G., Fernanda M.B. (2002a) Study of rheological  

behavior of elastomer/polypropylene blends. Polymer Testing. 21: 289-293. 



 193

Da Silva, A.L.N., Rocha, M.C.G., Fernanda M.B., Bretas R.E.S., Farah M. (2002b)  

Evaluation of theological and mechanical behavior of blends based on 

polypropylene and metallocene elastomers. Polymer Testing. 21: 647-652. 

Danesi, S. and Porter, R.S. (1978). Blends of Isotactic Polypropylene and Ethylene  

Propylene Rubbers: Rheology, Morphology and Mechanics. Polymer. 19:  

448-457.  

Di, Y., Iannace, S. and Nicolais, L. (2002). Thermal Behavior and Morphological  

and Rheological Properties of Polypropylene and Novel Elastomeric Ethylene  

Copolymer Blends. Journal of Applied Polymer Science. 86: 3430-3439.  

Dijkstra, K., Wevers, H.H., and Gaymans, R.J. (1994). Nylon-6/rubber blends: 7.  

Temperature-time effects in the impact behaviour of nylon/rubber blends. 

Polymer. 35:323-331. 

Ding, C., Jia, D.M, He, H., Guo, B.C., and Hong, H.Q. (2005). How organo- 

montmorillonite truly affects the structure and properties of polypropylene. 

Polymer Testing. 24: 94-100.   

Donald, A.M. (1994). Failure Mechanism in Polymeric Materials. In: Collyer, A.A.  

Rubber Toughened Engineering Plastics, 1st Edition, Chapman and Hall,  

London.  

Doo, J.G., and Cho, I. (1998). Synthesis and properties of polystyrene- 

organoammonium montmorillonite hybrid. Polymer Bull.. 41: 511-518.  

Dubnikova, I.L., Berezina, S.M. and Antonov, A.V. (2002). The Effect of  

Morphology of Ternary-Phase Polypropylene/ Glass Bead/Ethylene-

Propylene Rubber Composites on the Toughness and Brittle-Ductile 

Transition. Journal of Applied Polymer Science. 85: 1911-1928. 

Eckel, F., Balogh, M.P., Fasulo, P.D., Rodgers, W.R. (2004). Assessing Organo-Clay  

Dispersion in Polymer I Nanocomposites. Journal of Applied Polymer 

Science. 93: 1110-1117. 

Eisenberg, A., and Tsagaropoulos G. (1995). Macromolecules. 28: 6067-6074. 

Ellis, T.S., and D’Angelo J.S. (2003). Thermal and Mechanical Properties of a  

Polypropylene Nanocomposite. Journal of Applied Polymer Science. 90: 

1639-1647.   

Fasulo, P.D., Rodgers, W.R., and Ottaviani, R.A. (2004). Polyolefin Extrusion  

Processing of TPO Nanocomposites. Polymer Enginering and Science. 44: 

1036-1045.   



 194

Ferry, J.D. (1980). Viscoelastic Properties of Polymers. New York: John Wiley.  

Fu, X. and Qutubuddin, S. (2001). Polymer-clay nanocomposites:.exfoliation of  

organophilic montmorillonite nanolayers in polystyrene. Polymer. 42: 807-

813. 

Garcia-Lopez, D., Picazo, O., Merino, J.C., and Pastor, J.M. (2003). Polypropylene- 

clay nanocomposites: effect of compatibilizing agents on clay dispersion. 

European Polymer Journal. 39: 945-950. 

Gaymans R.J. Toughening of Semicrystalline Thermoplastics In: Paul, D.R. and  

Bucknall, C.B.Polymer Blends.Volumer2: Performance, John Wiley & Sons, 

A Wiley-Interscience Publication, 2000, Ch. 25: 177.    

George, J, G., Reethamma, J., Sabu and Varughese, K.T. (1995). High Density  

Polyethylene/ Acrylonitrile Butadiene Rubber Blends: Morphology, 

Mechanical Properties, and Compatibilization. Journal of Applied Polymer 

Science. 57: 449-465.  

Gonzalez, J., Albano, C., Candal, M.V., Ichazo, M.N., Hernandez, M. (2005).  

Characterization of blends of PP and SBS vulcanized with gamma irradiation. 

Nuclear Instruments and Methods in Physics Research B. 57: 133. 

Gonzalez-Montiel, A.G. (1995a). Reactive Compatibilization and Toughening of  

Nylon 6/Polypropylene Blends. The University of Texas at Austin: Doctor of 

Philosophy Dissertation. 

Gonzalez-Montiel, A.G., Keskkula,H., and Paul,D.R. (1995b). Impact-modified  

Nylon 6/Polypropylene blends: 1. Morphology-property Relationships. 

Polymer, 36:  

4857-4603. 

Gonzalez-Montiel, A.G., Keskkula,H., and Paul,D.R. (1995c). Impact-modified  

Nylon 6/Polypropylene blends: 2. Effect of Reactive Functionality on 

Morphology and Mechanical Properties. Polymer. 36: 4605-4620. 

Ha, M.H., Kim, B.K., and Kim E.Y. (2004a). Effects of the blending sequence in  

polyolefin ternary blends. Journal of Applied Polymer Science. 92: 804–811. 

Ha, M.H., Kim, B.K., and Kim E.Y. (2004b). Effects of dispersed phase composition  

on thermoplastic polyolefins. Journal of Applied Polymer Science. 93: 179–

188. 

Hambir, S., Bulakh, N., Kodgire, P., Kalgaonkar, R. and Jog, J.P. (2001). PP/Clay  

Nanocomposites: A Study of Crystallization and Dynamic Mechanical  



 195

Behavior. Journal of Polymer Science: Part B: Polymer Physics. 39: 446-

450.  

Hambir, S., Bulkh, N., and Jog, J.P. (2002). Polypropylene/Clay Nanocomposites:  

Effect of Compatibilizer on the Thermal, Crystallization and Dynamic 

Mechanical Behavior. Polymer Engineering and Science. 42: 1800-1807. 

Hasegawa, N., Kawasumi, M., Kato, M., Usuki, A. and Okada, A. (1998).  

Preparation and Mechanical Properties of Polypropylene-Clay Hybrids Using 

a Maleic Anhydride-Modified Polypropylene Oligomer. Journal of Applied 

Polymer Science. 67: 87-92. 

Hasegawa N., Okamoto H., Kawasumi M., Usuki A. (1999), Preparation and  

mechanical properties of polystyrene-clay hybrids. Journal of Applied 

Polymer Science, 74: 3359-3364. 

Hashemi, S., and Williams, J,G, (1996). Fracture Characterization of Tough  

Polymers Using the J Method. Polymer. 27: 384. 

Hashemi, S. (1997). Work of Fracture of PBT/PC Blend: Effect of Specimen Size,  

Geometry, and Rate of Testing. Polymer Engineering and Science. 37: 912-

922. 

Hashemi, S. (2003). Work of fracture of high impact polystyrene (HIPS) film under  

plane stress conditions. Journal of Materials Science. 38: 3055-3062.  

Ho, R.M., Wu, C.H. and Su, A.C. (1990). Morphology of Plastic/Rubber Blends.”  

Journal of Applied Polymer Science. 30: 511-518.  

Hornsby P.R. and Premphet K. (1997). Fracture toughness of multiphase  

polypropylene composites containing rubbery and participate inclusions. 

Journal of Materials Science. 32: 4767-4775.     

Hornsby, P.R. and Premphet, K. (1998). Influence of Phase Microstructure on the  

Mechanical Properties of Ternary Phase Polypropylene Composites. Journal 

of Applied Polymer Science. 70: 587-597. 

Huang D.D. and Williams J.G. (1990). Comments on Fracture Toughness of Impact  

Modified Polymers Based on the J-Integral. Polymer Engineering and 

Science. 30: 1341. 

Ibrahim, A. and Dahlan, M. (1998), Thermoplastics Natural Rubber Blends,  

Progress Polymer Science, 23, 665-706. 

Jancar, J., DiAnselmo A., DiBenedetto, A.T., and Kucera, J. (1993). Failure  

mechanics in elastomer toughened polypropylene. Polymer. 34: 1684-1694. 



 196

Jancar, J., and Dibenedetto, A.T. (1994). Effect of interfacial interaction on  

morphology and mechanical properties of ternary composites. Journal of  

Materials Science. 29: 4651-4659.   

Jang, B.Z., Uhlmann, D.R., and Vander Sande J.B. (1985). Rubber-toughening in  

polypropylene. Journal of Applied Polymer Science.30: 2485-2504. 

 Jeon, H. S., Nakatani, A. I., Han, C. C., and Colby, R. H. (2000). Melt Rheology of  

Lower Critical Solution Temperature Polybutadiene/Polyisoprene Blends. 

Macromolecules. 33: 9732-9739. 

Jiang, T., Wang, Y.H., Yeh, J.T., Fan, Z.Q. (2005). Study on solvent permeation  

resistance properties of nylon6/clay nanocomposite. European Polymer 

Journal. 41: 459–466. 

Kaempfer, D., Thomann, R., and Mulhaupt, R. (2002). Melt compounding of  

syndiotactic polypropylene nanocomposites containing organophilic layered 

silicates and in situ formed core/shell nanoparticles. Polymer. 43: 2909-2916. 

Kale, L.T., Plumley, T.A., Patel, R.M. and Jain, P. (1995) Structure-property  

relationship of ethylene/1-octene and ethylene/1-butene copolymers made 

using INSITE Technology. ANTEC’95: 2249. 

Kato, M., Usuki, A., Okada, A., Kurauchi, T., (1997a). Synthesis of polypropylene- 

clay hybrid. J Appl. Polym. Sci. 63, 137-139.  

Kato, M., Usuki, A. and Okada, A. (1997b). Synthesis of Polypropylene Oligomer- 

Clay Intercalation Compounds. Journal of Applied Polymer Science. 66: 

1781-1785. 

Kato M., Matsushita M., and Fukumori K. (2004). Development of a New  

Production Method for a Polypropylene-Clay Nanocomposite. Polymer 

Engineering and Science. 44: 1205-1211. 

Kawasumi, M.; Hasegawa, N.; Kato, M.; Usuki, A.; Okada, A. (1997). Preparation  

and Mechanical Properties of Polypropylene-Clay Hybrids. Macromolecules. 

30: 6333-6338. 

 Keawwattana W. (2002), Phase Behavior, Crystallization, and Morphological  

Development in Blends of Polypropylene Isomers and Poly(ethylene-Octene) 

Copolymer. University of Akron: Master of Science Thesis. 

Karger-Kocsis, J. and Czigány, T. (1996). On the essential and non-essential work of  

fracture of biaxial-oriented filled PET film. Polymer. 37: 2433-2438 . 

Karger-Kocsis, J., Czigany, T. and Moskala, E.J. (1998). Deformation rate  



 197

dependence of the essential and non-essential work of fracture parameters in 

an amorphous copolyester. Polymer. 39: 3939-3944.  

Karger-Kocsis, J. and Mouzakis, D.E. (1999). Effects of Injection Molding-Induced \

 Morphology on the Work of Fracture Parameters in Rubber-Toughened  

Polypropylenes. Polymer Engineering and Science. 39: 1365-1374.  

Karian, H.G. (1999). Handbook of Polypropylene and Polypropylene Composites,  

2nd. New York, Marcel Dekker,  

Kawasumi, M., Hasegawa, N., Kato, M., Usuki, A., and Okada, A. (1997).  

Preparation and Mechanical Properties of Polypropylene-Clay Hybrids. 

Macromolecules. 30: 6333-6338. 

Ke, Y,C., Long, C.F., and  Qi, Z.N. (1999). Crystallization, properties, and crystal  

and nanoscale morphology of PET-clay nanocomposites Journal of Applied

 Polymer Science. 71: 1139-1146 

Keawwattana, W. (2002). Phase Behavior, Crystallization and Morphological  

Development in Blends of Polypropylene (PP) Isomers and Poly(Ethylene-

Octene) Copolymer. University of Akron: Doctor of Philosophy Thesis.  

Ketan, K. Maniar (2002), A Literature Survey On Nanocomposites, University of  

Massachusetts Lowell: Master of Science Thesis.  

Khatua, B. B., Lee, D.J., Kim, H.Y., and Kim, J.K. (2004). Effect of Organoclay  

Platelets on Morphology of Nylon-6 and Poly(ethylene-ran-propylene) 

Rubber Blends. Macromolecules. 37: 2454-2459.    

Kim, K.N., Kim, H. and Lee, J.W. (2001). Effect of Interlayer Structure, Matrix  

Viscosity and Composition of a Functionalized Polymer on the Phase 

Structure of Polypropylene-Montmorillonite Nanocomposites. Polymer of 

Engineering and Science. 41: 1963-1969. 

Kim, J.K., Hu, C.G., Woo, R.S.C., Sham, M.L. (2005). Moisture barrier  

characteristics of organoclay–epoxy nanocomposites. Composites Science 

and Technology. 65: 805–813. 

Kodgire, P., Kalgaonkar, R., Hambir, S., Bulakh, N., and Jog, J.P. (2001).  

PP/Clay Nanocomposites: Effect of Clay Treatment on Morphology and 

Dynamic Mechanical Properties. Journal of Applied Polymer Science. 81: 

1786-1792.  

Kojima, Y. (1993). Mechanical properties of nylon-6 clay hybrid. Journal of  

Materials Research. 8: 1185-1189.  



 198

Kolarík, J. (1992). Ternary composites of polypropylene/elastomer/calcium  

carbonate: effect of functionalized components on phase structure and 

mechanical properties. Polymer. 33: 4961-4967  
Kornmann, X, Berglund,L.A., Sterte, J. and Giannelis, E.P. (1998), Nanocomposites  

Based on MMT and Unsaturated Polyester, Polymer Engineering and 

Science, 38, 1351-1358. 

Kornmann, X, Lindberg, H., and Berglund,L.A. (2000). Stiffness Improvement and  

Molecular Mobility in Epoxy-Clay nanocomposites, Mat. Res. Soc. Symp. 

Proc., 628 

Kornmann, X. (2001), Synthesis and Characterization of Thermoset-Layered Silicate  

  Nanocomposites. Lulea University of Technology: Doctoral Thesis. 

Kornmann, X, Lindberg, H., and Berglund,L.A. (2001a). Synthesis of Epoxy-Clay  

Nanocomposites: Influence of the nature of the Clay on Structure. Polymer, 

42: 1303-1310. 

Kornmann, X, Lindberg, H., and Berglund,L.A. (2001b). Synthesis of Epoxy-Clay  

Nanocomposites: Influence of the nature of the Curing Agent on Structure. 

Polymer, 42: 4493-4499. 

Kurokawa, Y., Yasuda, H., Kashiwagi, M., and Oya, A. (1997). Structure and  

properties of a montmorillonite/polypropylene nanocomposite  Journal of 

Materials Science Letters. 16: 1670-1676. 

Laura, D.M., Keskkula, H., Barlow, J.W., and Paul, D.R. (2003). Impact Strength  

and Dynamic Mechanical Properties Correlation in Elastomer-Modified 

Polypropylene. Polymer. 44: 3347-3361. 

LeBaron, P.C., Wang, Z. and Pinnavaia, T.J. (1999). Polymer-layered silicate  

nanocomposites: an overview. Applied Clay Science. 15: 11-29. 

Lee, D.C. and Jang, L.W. (1996). Preparation and characterization of PMMA-clay  

hybrid composite by emulsion polymerization. Journal of Applied polymer 

Science. 61: 1117-1122.  

Lertwimolnun W., and Vergnes B. (2005). Influence of compatibilizer and  

processing conditions on the dispersion of nanoclay in a polypropylene 

matrix. Polymer. 46: 3462–3471. 

Lew, C.Y., Murphy, W.R., and McNally, G.M. (2004). Preoaration and Properties of  

Polyolefin-Clay Nanocomposites. Polymer Engineering Science. 44: 1027-

1035.  



 199

 Li, W.D., Li, R.K.Y., Tjong, S.C. (1997). Fracture Toughness of Elastomer- 

Modified Polypropylene. Polymer Testing. 16: 563-574.   

Li, J.X., Wu, J.S., Chan, C.M. (2000). Thermoplastic Nanocomposites. Polymer. 41:  

6935-6937. 

Li. Y.M. (2001). Mechanical Behavior of Multi-Phase Clay-Modified Polypropylene  

Blend Systems. Texas A&M University: Doctor of Philosophy. 

Li, Y.M., Wei, G.X., Sue, H.J. (2002). Morphology and toughening mechanisms in  

clay-modified styrene-butadiene-styrene rubber-toughened polypropylene. 

Journal of Materials Science. 37: 2447-2459.   

Li, J., Zhou, C.X., Wang, G., Yu, W., Tao, Y., Liu Q. (2003). Preparation and linear  

rheological behavior of polypropylene/MMT nanocomposites. Polymer 

Composites. 24: 323-331. 

Li, Z., Guo, S.Y., Song, W.T. and Hou, B. (2003a). Effect of interfacial interaction  

on morphology and mechanical properties of PP/POE/BaSO4 ternary 

composites. Journal of Materials Science. 38: 1793-1802. 

Li, Y.J., Shimizu, H. (2004). Novel morphologies of poly(phenylene oxide) (PPO) /

 polyamide 6 (PA6) blend nanocomposites. Polymer. 45: 7381-7388.  

Li, Y., Zhang, Y., Zhang, Y.X. (2004). Morphology and mechanical properties of  

HDPE/SRP/elastomer composites: effect of elastomer polarity. Polymer 

Testing 23: 83-90.   

Liang, J.Z. and Li, R.K.Y. (2000). Rubber Toughening in Polypropylene: A Review.  

Journal of Applied Polymer Science. 77: 409-417. 

 Lieberman, R.B. and Barbe, P.C. (1990). Polypropylene. In: Corish, P.J. Consice  

Encyclopedia of Polymer Processing & Application. Oxford: Pergamom 

Press. 533-537. 

Lind, E.V. (1992). Polymers: Tests for Mechanical Properties. In: Corish, P.J. 

Consice Encyclopedia of Polymer Processing & Application. Oxford: 

Pergamon Press. 533-537. 

Liu, Y. and Truss, R. W. (1996). Study of Dispersion Morphologies of Isotactic  

Polypropylene and Linear Low Density Polyethylene Blends by Scanning 

Electron Microscopy. Journal of Applied Polymer Science. 60: 1461-1473.  

Liu, X., and Wu, Q. (2001). PP/clay nanocomposites prepared by grafting-melt  

Intercalation. Polymer. 42: 10013-10019. 

Liu X., Wu Q., Berglund L.A. (2002). Polymorphism in Polyamide 66/clay  



 200

Nanocomposites. Polymer 43: pp 4967-4972. 

 Liu, T., Lim, K.P., Tjiu, W.C., Pramoda, K.P., and Chen, Z.K. (2003). Preparation  

and Characterization of Nylon 11/Organoclay Nanocomposites. Polymer. 44: 

3529-3535. 

Liu, W.P., Hoa, S.V., Pugh, M. (2005). Organoclay-modified high performance  

epoxy nanocomposites. Composites Science and Technology. 65: 307–316. 

Long, Y., and Shanks, R.A. (1996). PP-elastomer-filler hybrids. I. Processing,  

microstructure, and mechanical properties. Journal of Applied Polymer 

Science. 61: 1877-1885 

Lotti, C., Correa, C.A., Canevarolo, S.V. (2000). Mechanical and Morphological  

Characterization of Polypropylene Toughened with Olefinic Elastomer. 

Materials Research. 3: 37-44.   

Lynch, J.C.(2000). Impact Modification of Polypropylene as a Function of Rubber  

Toughening Parameters. Rensselaer Polytechnic Institute Troy, New York, 

PhD Thesis 

Ma, J.S., Qi, Z.N., and Hu, Y.L. (2001). Synthesis and Characterization of  

Polypropylene/Clay Nanocomposites. Journal of Applied Polymer Science.  

82: 3611-3617.  

Ma, J., Zhang S., Qi, Z. and Hu, Y. (2002). Crystallization Behaviors of  

Polypropylene/Montmorillonite Nanocomposites. Journal of Applied 

Polymer Science. 83: 1978-1985.  

Ma, K.X., Liu, T.X., Liu, Z.H., Shen, L., Zeng, K.Y., and He, C.B. (2003).  

Morphology, Thermal and Mechanical Behavior of Polyamide 6/Layered-

Silicate Nanocomposites, Composites Science and Technology. 63: 331-337. 

McGrath, G.C. Fracture and Toughening in Fibre Reinforced Polymer Composites.  

In: Coller, A.A. “Rubber Toughened Engineering Plastics”. Chapman & Hall, 

London, 1994, 57-89. 

Mai, Y.W., Wong, S.C., and Chen, X.H. Polymer Blends, Volume 2: Performance  

(ed. D.R. Paul and C.B. Bucknall), 17-57, 2000, John Wiley & Sons, Inc.  

 Maiti, P., Nam, P.H., Okamoto, M., Kotaka, T., Hasegawa, N., Usuki, A. (2002a).  

Influence of Crystallization on Intercalation. Morphology, and Mechanical 

Properties of Polypropylene/Clay Nanocomposites. Macromolecules, 35: 

2042-2048.  

Maiti, P., Nam, P.H., Okamoto, M., Kotaka, T., Hasegawa, N., Usuki, A. (2002b).  



 201

The Effect of Crystallization on the Structure olypropylene/Clay 

Nanocomposites. Polym Engng Sci. 42:1864-1871.  

Makadia, C.M. (2000). Nanocomposites of Polypropylene by Polymer Melt  

Compounding Approach. University of Massachusetts Lowell: Master of 

Science Thesis 

Manias, E., Touny, A., Wu, L., Strawhecker, K., Lu, B., and Chung, T.C. (2001).  

Polypropylene/Montmorillonite Nanocomposites. Review of the Synthetic 

Routes and Materials Properties. Chem. Mater. 13: 3516-3523.  

Marchant, D.and Jayaraman, K. (2002). Strategies for Optimizing Polypropylene- 

Clay Nanocomposite Structure. Ind. Eng. Chem. Res. 41: 6402-6408    

Masenelli-Varlot, K., Reynaud, E., Vigier G., and Varlet J., (2002), Mechanical  

Properties of Clay-Reinforced Polyamide. Journal of Polymer Science: Part 

B: Polymer Physics, 40, 272-283. 

McNally, T., McShane, P., Nally, G.M., Murphy, W.R., Cook, M., Miller, A. (2002).  

Rheology, phase morphology, mechanical, impact and thermal properties of  

polypropylene/metallocene catalysed ethylene 1-octene copolymer blends.  

Polymer. 43: 3785-3793.   

McNally, T., Murphy, W.R., Lew, C.Y. Turner, R.J., and Brennan, G. (2003).  

Polyamide-12 Layered Silicate Nanocomposotes by Melt Blending. Polymer.  

43: 2761-2772. 

Mehrabzadeh, M., Hossein, Nia K. (1999). Impact Modification of Polypropylene by  

Ethylene Propylene Copolymer-Grafted Maleic Anhydride. Journal of  

Applied Polymer Science. 72: 1257-1265.  

Mehta, S., Mirabella, F.M., Rufener, K. Bafna, A. (2005). Thermoplastic olefin/clay  

nanocomposites: Morphology and mechanical properties. Journal of Applied  

Polymer Science. 92: 928 – 936.  

Messermith, P.B. and Giannelis, E.P. (1994). Synthesis and characterization of  

layered silicate-epoxy nanocomposites. Chemistry of Materials. 6: 1719-

1725. 

Messermith, P.B. and Giannelis, E.P. (1995). Synthesis and barrier properties of  

poly(έ-caprolactone)-layered silicates nanocomposites. Journal of Applied 

Polymer Science. Part A. 33: 1047-1057. 

Mishra, J.K., Hwang, K.J., Ha, C.S. (2005). Preparation, mechanical and rheological  



 202

properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite 

with reference to the effect of maleic anhydride modified polypropylene as a 

compatibilizer. Polymer. 46: 1995–2002. 

Mishra, J.K., Ryou, J.H., Kim, G.H., Hwang, K.J. Kim, I., and Ha, C.S. (2005).  

Preparation and properties of a new thermoplastic vulcanizate 

(TPV)/organoclay nanocomposite using maleic anhydride functionalized 

polypropylene as a compatibilizer. Materials Letters. 58: 3481–3485. 

Mohd Ishak Z.A., Ishiaku U.S., Karger-Kocis J. (2000). Hydrothermal aging and  

fracture behaviour of short-glass-fiber-reinforced rubber-toughened 

poly(butylene terephthalate) composites. Composites Science and 

Technology. 60, 803-815. 

Montoya, M., Tomba, J.P., Carella, J.M., and Gobernado-Mitre M.I. (2004). Physical  

characterization of commercial polyolefinic thermoplastic elastomers. 

European Polymer Journal. 40: 2757–2766. 

Morgan, A.B. and Gilman, J.W. (2003). Characterization of Polymer-Layered  

Silicate (Clay) Nanocomposites by Transmission Electron Microscopy and 

X-Ray Diffraction: A Comparative Study. Journal of Applied Polymer 

Science. 87: 1329-1338.          

Mouzakis D.E., Mader D., Mulhaupt R., Karger-Kocsis J. (2000). Relationship  

between morphology and mechanical properties of polypropylene/ethane-co-

butene binary blends with various butane contents. Journal of Materials 

Science. 35: 1219-1230.    

Nam, P.H., Maiti, P., Okamoto, M., Kotaka, T., Hasegawa, N. and Usuki, A. (2001).  

A hierarchical structure and properties of intercalated polypropylene/clay  

nanocomposites. Polymer. 42: 9633-9640. 

Nanocomposite 1999: Polymer Technology for the Next Century, Company Press  

Release, Principia Partners.  

Narisawa, I. and Takemori, M.T. (1989). Fracture Toughness of Impact-Modified  

Polymers Based on the J-Integral. Polymer Engineering and Science. 29: 671. 

Nielsen, L.E. and Landel, R.F. (1994).  Mechanical Properties of Polymers and  

Composites. 2nd ed. New York: Marcel Dekker. In. 268-282. 

Nitta, K.H., Shin, Y.W., Hashiguchi, H., Tanimoto, S., and  Terano, M. (2005).  

Morphology and mechanical properties in the binary blends of isotactic  



 203

polypropylene and novel propylene-co-olefin random copolymers with 

isotactic propylene sequence 1. Ethylene–propylene copolymers. Polymer. 46: 

965–975. 

Nowacki, R., Monasse, B., piorkowska, E., Galeski, A., Haudin, J.M. (2004).  

Spherulite nucleation in isotactic polypropylene based nanocomposites with 

montmorillonite under shear. Polymer, 45: 4877-4892. 

Okada, A., Fukumori, K., Usuki, A., Kojima, Y., Kurauchi, T., Kamigaito, 0. (1991).  

Rubber-clay hybrid- synthesis and properties. Polym. Prep. 32: 540-541.  

Okada, A., Usuki, A. (1995). The chemistry of polymer-clay hybrids. Mater. Sci.  

Eng. C3: 109-115.   

Okamoto, M., Kubo, H., and Kotaka, T. (1999). Elongational Flow-Induced Higher- 

Order Structure Development in a Supercooled Liquid of a Metallocene-

Catalyzed Syndiotactic Polystyrene. Macromolecules. 32: 6206-6214 

Ostromislenky, I.I., US Patent. 1,613,673 (Jan. 1927) 

Ou, Y.C., Guo, T.T., Fang, X.P., Yu, Z.Z. (1999). Toughening and reinforcing  

polypropylene with core-shell structured fillers. Journal of Applied Polymer 

Science. 74: 2397-2403. 

Paul, S., and Kale, D.D. (2000). Impact Modification of Polypropylene Copolymer  

with a Polyolefinic Elastomer. Journal of Applied Polymer Science. 76: 1480-

1484. 

Perera, R., Albano, C., Gonzalez, J., Silva, P., Ichazo M., (2004). The effect of  

gamma radiation on the properties of polypropylene blends with styrene-

butadiene-styrene copolymers. Polymer Degradation and Stability. 85: 741-

750. 

 Perkin W.G. (1999). Polymer toughness and impact resistance. Polymer  

 Engineering and Science.  39: 12. 

Petrovic, Z.S., Budinski-Simendi, J., Divjakovi, V., and  Skrbic, Z.J. (1996). Effect  

of addition of polyethylene on properties of polypropylene/ethylene-

propylene rubber blends. Journal of Applied Polymer Science.59: 301-310. 

Plumley, T.A., Patel, R.M. and Jain, P. (1995). Structure-property relationship  

of ethylene/1-octene and ethylene/1-butene copolymers made using INSITE 

Technology. ANTEC’95, 2249. 

Premphet K., and Hornsby P. (1998). Influence of Phase Microstructure on the  



 204

Mechanical Properties of Ternary Phase Polypropylene Composites. J. Appl. 

Polym. Sci. 70, 587-597. 

Premphet, K. and Horanont, P. (1999). Influence of Stearic Acid Treatment of Filler  

Particles on the Structure and Properties of Ternary-Phase Polypropylene 

Composites. Journal of Applied Polymer Science. 74: 3445-3454. 

Premphet, K. and Horanont, P. (2000a). Phase structure of ternary  

polypropylene/elastomer/filler composites: effect of elastomer polarity. 

Polymer. 41: 9283-9290. 

Premphet, K. and Horanont, P. (2000b). Phase Structure and Property Relationships  

in Ternary Polypropylene/Elastomer/Filler Composites: Effect of Elastomer 

Polarity. Journal of Applied Polymer Science. 76: 1929-1939. 

Premphet, K. and Paecharoenchai, W. (2001). Quantitative Characterization 

of Dispersed Particle Size, Size Distribution, and Matrix Ligament Thickness 

in Polypropylene Blended with Metallocene Ethylene-Octene Copolymers. 

Journal of AppliedPolymer Science. 82: 2140-2149. 

Ray, S.S., and Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a  

review from preparation to processing. Progress in Polymer Science. 28: 

1539-1641. 

Pukansky B., Belina K., Rockenbauer A. and Maurer F.H.J. (1994). Effect of  

Nucleation, Filler Anisotropy and Orientation on the Properties of PP 

Composites. Composites 25: 205-209. 

Reichert, P., Nitz, H., Klinke, S., Brandsch, R., Thomann, R., and Mulhaupt, R.  

(2000). Poly(propylene)/organoclay nanocomposite formation: Influence of 

compatibilizer functionality and organoclay modification. Macromol. Mater. 

Eng. 275, 8-17. 

Scobbo, Jr., JJ. (1991). Dynamic Mechanical Analysis of Compatibilized Polym  

Blends. Polymer Testing. 10: 279-290.  

Scott C.E. and Macosko C.W. (1995). Morphology development during the initial  

stages of polymer-polymer blending. Polymer. 36: 461-470. 

Sengers, W.G.F., Sengupta, P., Noordermeer, J.W.M., Picken, S.J., Gotsis, A.D.  

(2004). Linear viscoelastic properties of olefinic thermoplastic elastomer 

blends: melt state properties. Polymer. 45: 8881–8891. 

Seo, Y.S., Kim, J.H., Kim, K.U., and Kim, Y.C. (2000). Study of the crystallization  



 205

behaviors of polypropylene and maleic anhydride grafted polypropylene. 

Polymer. 41: 2639-2646. 

Sharif, J., Wan Yunus, W.M.Z., Mohd Dahlanb, K.Z.Hj., and Ahmad, M.Hj. (2005).  

Preparation and properties of radiation crosslinked natural rubber/clay 

nanocomposites. Polymer Testing. 24: 211–217. 

Shih, C.K. (1995). Mixing and morphological transformations in the compounding  

process for polymer blends: The phase inversion mechanism. Polymer  

Engineering and Science. 35: 1688-1694. 

Sichina, W.J. and Gill, P.S. (1986). Characterization of Composites by Thermal  

Analysis. 31st International SAMPE Symposium. Wilmington: Concord Plaza. 

April. 7-10.  

Sichina, WJ. (1994). Prediction of End-use characteristics of Polyethylene Materials  

Using Differential Scanning Calorimetry. USA: Application Briff DSC-11.  

Su, S.P., Jiang, D.D., and Wilkie, C.A. (2004). Poly(methyl methacrylate),  

polypropylene and polyethylene nanocomposites formation by melt blending 

using novel polymerically-modified clays. Polymer Degradation and 

Stability. 83: 321-331. 

Sunil, D. Jain (1999), Maleated EPDM Polyblends, University of Massachusetts  

Lowell, Master of Science Thesis.   

Swei, H., Crist, B. and Carr, S.H. (1991). The J integral fracture toughness and  

damage zone morphology in polyethylenes. Polymer. 32: 1440-1446. 

Tam, W.Y., Cheung, T., and Li, R.K.Y. (1996). An Investigation on the Impact  

Fracture Characteristics of EPR Toughened Polypropylene. Polymer Testing. 

15: 363-379.  

Tang H. (2000). Novel Polyolefin Elastomer-Based Blends and Their Applications,  

University of Florida. Doctor of Philosophy Dissertation.  

Thompson, E.V. (1990). Thermal Properties.In Kroschwitz, J.I. Concise  

Encyclopedia of Polymer Science and Engineering. New York: John Wiley & 

Sons. 1185-1187. 

Tidjani, A., Oliver Wald, Martina-M. Pohl, Manfred P. Hentschel, Bernhard Schartel  

(2003) Polypropylene–graft–maleic anhydride-nanocomposites: I -

Characterization and thermal stability of nanocomposites produced under 

nitrogen and in air. Polymer Degradation and Stability 82 (2003) 133–140 

Tjong, S.C., Xu, S.A., Li, R.K.Y. and Mai, Y.W. (2002). Mechanical behavior and  



 206

fracture toughness evaluation of maleic anhydride compatibilized short glass 

fiber/SEBS/polypropylene hybrid composites. Composites Science and 

Technology. 62: 831-840. 

Ton-That, M.T., Perrin-Sarazin, F., Colek, K.C., Bureau, M.N., and Denault J.  

(2004). Polyolefin Nanocomposites: Formulation and Development. Polymer 

Engineering and Science. 44: 1212-1219. 

Ueda (2001). Polymer Alloy Compendium, Lecture Note: High Performance  

PolymerTechnology Courses, Osaka Municipal Technical Research Institute, 

Japan.  

Utracki, L.A. Polypropylene Blends with Elastomers. In: Karger-Koccis, K.  

Polypropylene: A-Z Reference. Dordrecht: Kluwer Publishers, 1999; 621. 

Van der Wal, A., Nijhof, R., and Gaymans, R.J. (1999). Polypropylene-rubber  

blends: 2. The effect of the rubber content on the deformation and impact 

behaviour. Polymer. 40: 6031-6044. 

Wan Abdul Rahman, W.A. (1996). SMR/ENR50/PVC Ternary Blends: Preparation,  

Blending Characteristics and Compatibilization Studies. Universiti Teknologi 

Malaysia: Ph.D. Thesis. 

Wang, Z. (1996). Toughening and Reinforcing of Polypropylene. J. Appl. Polym. Sci.  

60, 2239-2243.  

Wang, S.J., Long, C.F., Wang, X.Y., Li, Q., Qi, Z.N. (1998). Synthesis and  

properties of silicone rubber organomontmorillonite hybrid nanocomposites, 

J. Appl. Polym. Sci. 69: 1557-1561. 

Wang, Z., Massam, J., and Pinnavaia, T.J. Epoxy-Clay Nanocomposites. In:  

Pinnavaia T.J. and Beall G.W. Polymer-Clay Nanocomposites. John Wiley & 

Son, Ltd, 2002; 127-150. 

Wang, S.F., Hu, Y., You, F., Song, L., Chen, Z.Y., and W.C. Fan (2003). Self- 

assembly of polycarbonate/acrylonitrile-butadiene-styrene/montmorillonite 

nanocomposites. J. Appl. Polym. Sci. 90, 1445-1446.  

Wang, Y., Chen, F.B., Li, Y.C., Wu K.C. (2004a). Melt processing of  

polypropylene/clay nanocomposites modified with maleated polypropylene 

compatibilizers. Composites: Part B. 35: 111–124. 

Wang, Y., Chen, F.B., Wu, K.C. (2004b). Twin-Screw Extrusion Compounding of  

Polypropylene/ Organoclay Nanocomposites Modified by Maleated 

Polypropylenes. Journal of Applied Polymer Science. 93: 100-112.   



 207

Wang Y., Chen F.B., and Wu K.C. (2005). Effect of the molecular weight of  

maleated polypropylenes on the melt compounding of 

polypropylene/organoclay nanocomposites. Journal of Applied Polymer 

Science. 97: 1667-1680.   

Wetton, R.E. and Corish, P.J. (1989). DMTA Studies of Polymer Blends and  

Compatibility. Polymer Testing. 8: 303-312.  
Williams, J.G. Fracture Mechanics of Polymers. Ellis Horwood Limited, Chichester,  

England (1984). 

Wu, J.S and Mai, Y.W. (1996). The Essential Fracture Work Concept for Toughness  

Measurement of Ductile Polymers. Polymer Engineering and Science 36: 

2275-2288. 

Wu, Z., Zhou, C., and Zhu, N. (2002). The nucleating effect of montmorillonite on  

crystallization of nylon 1212/ montmorillonite nanocomposite. Polymer 

Testing. 21: 479-483. 

Xiao, J.F., Hu, Y., Wang, Z.Z., Tang, Y., Chen, Z.Y., and Fan, W.C. (2005).  

Preparation and characterization of poly(butylene terephthalate) 

nanocomposites from thermally stable organic-modified montmorillonite. 

European Polymer Journal. 41: 1030–1035. 

Xu, W.B., Liang, G., Wang, W., Tang, S., He, P., and Pan, W.P. (2003a). PP-PP-g- 

MAH-Org-MMT Nanocomposites. I. Intercalation Behavior and 

Microstructure. Journal of Applied Polymer Science. 88: 3225-3231. 

Xu, W., Liang, G., Zhai, H., Tang, S., Hang, G. and Pan, W.P. (2003b). Preparation  

and crystallization behaviour of PP/PP-g-MAH/Org-MMT nanocomposite. 

European Polymer Journal. 39: 1467-1474. 

 Yamaguchi, M., Miyata, H., and Nitta, K.H. (1996). Compatibility of binary blends  

of polypropylene with ethylene- -olefin copolymer. Journal of Applied 

Polymer Science. 62: 87-97. 

Yasue, K, Katahira, S, Yoshikawa, M, Fujimoto, K. In: Pinnavaia, T.J. and Beall, 

G.W. Polymer-Clay Nanocomposites. New York: John Wiley & Sons, 2001; 

111. 

Yu, J., and He, J. (2000). Crystallization kinetics of maleic anhydride grafted  

polypropylene ionomers. Polymer. 41:891-898. 

Zerda, A.S. and Lesser A.J. (2001). Intercalated Clay Nanocomposite: Morphology,  



 208

Mechanics and Fracture Behavior. Journal of Polymer Science: Part B: 

Polymer Physics, 39: 1137-1146. 

Zhang, Q., Fu, Q., Jiang, L., and Lei, Y. (2000). Preparation and properties of  

polypropylene/ montmorillonite layered nanocomposites. Polymer 

Inernational. 49: 1561-1564. 

Zhang, H., Wang, J., Cao, S. and Shan, A. (2001). Toughened Polypropylene with  

Balanced Rigidity (III): Compositions and Mechanical Properties. Journal of 

Applied Polymer Science. 79: 1345-1350.  

Zhao, R.F. and Dai, G. (2002). Mechanical Property and Morphology Comparison  

between the Two Blends Poly(propylene)/Ethylene Propylene-Diene 

Monomer Elastomer and Poly(propylene)/ Maleic Anhydride-g-Ethylene-

Propylene-Diene Monomer. Journal of Applied Polymer Science. 86: 2486-

2491.  

Zhong, Y., Zhu, Z.Y., Wang, S.Q. (2005). Synthesis and rheological properties of  

polystyrene/layered silicate nanocomposite. Polymer. 46: 3006–3013. 

Zhu, L.J. and Xanthos, M. (2004). Effects of Process Conditions and Mixing  

Protocols on Structure of Extruded Polypropylene nanocomposites. Journal 

of Applied Polymer Science. 93: 1891-1899.   

 
 




