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The wastewater treatment plant (WWTP) is highly known with the nonlinearity of the control parameters, thus it is difficult to be
controlled. In this paper, the enhancement of nonlinear PI controller (ENon-PI) to compensate the nonlinearity of the activated
sludgeWWTP is proposed.TheENon-PI controller is designed by cascading a sector-boundednonlinear gain to linear PI controller.
The rate variation of the nonlinear gain 𝑘

𝑛
is automatically updated based on adaptive interaction algorithm. Initiative to simplify

the ENon-PI control structure by adapting 𝑘
𝑛
has been proved by significant improvement under various dynamic influents. More

than 30% of integral square error and 14% of integral absolute error are reduced compared to benchmark PI for DO control and
nitrate in nitrogen removal control. Better average effluent qualities, less number of effluent violations, and lower aeration energy
consumption resulted.

1. Introduction

The wastewater treatment plant (WWTP) is naturally aimed
to remove the suspended substances, organic material, and
phosphate from the water before releasing it to the recipi-
ent. The best technology available was used to control the
discharge of pollutants emphasized in biological process,
namely, as activated sludge process (ASP). In ASP, the organic
materials are oxidized by microorganisms. The organic
material is then transformed into carbon dioxide and some
incorporate into new cell mass.The new cell mass then forms
sludge that contains both living and dead microorganisms
and, thus, contains organicmaterial, phosphorous, and nitro-
gen [1]. Referring to [2], the common problems inWWTP are
caused bymaintenance issues and poor effluent quality which
are due to poor control approaches.

According to [3], aeration process is a crucial part of the
whole ASP. It is a nontrivial task to transport the oxygen
from the air bubbles to the cells of the microorganisms,
thus the process is commonly described by the oxygen mass
transfer coefficient (𝐾La). The 𝐾La is, in general, nonlinear

and depends on the aeration actuating system and the sludge
conditions [4]. Indeed, as referred to in [5], the dissolved
oxygen (DO) is stated as a key variable and commonly
applied in controlling the ASP. The level of DO in the
aerobic reactors has a direct influence on themicroorganisms’
activities in the activated sludge. The DO level should be
sufficiently high so that enough oxygen can be delivered to
the microorganisms in the sludge. However, an excessively
high DO will require higher airflow rate and thus leads
to higher energy consumption and deteriorate the sludge
quality. Meanwhile, nitrogen removal in activated sludge
requires two-step procedure which takes place simultane-
ously nitrification and denitrification processes. Nitrification
is a process in which ammonium is oxidized to nitrate under
aerobic (present oxygen) conditions. The nitrate formed
by nitrification process, in turn, is converted into gaseous
nitrogen under anoxic (absent oxygen) conditions, that is
called denitrification.The improvement of DO concentration
in aerated tanks and the nitrogen removal process contribute
to big interest of activated sludge control.
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The proportional-integral (PI) technique is one of the
control strategies that are frequently applied in WWTP. As
referred to in [6], each part of PI controller highly contributes
in achieving the control target. The proportional part is
potential to increase the response speed and control accuracy
while the integration part is normally used in eliminating
the steady-state error of the system. The performances of
several control strategies with PI controller to the WWTP
have been discussed in [7, 8]. However, it is hard to achieve
high control performance in all operating conditions with
a linear PI controller due to different dynamic behaviours
of the WWTP control parameters. More retuning task will
always be demanded for a fixed-gain PI controller.Therefore,
a controller that is potential to maintain a balance of DOs
concentrations and nitrogen removal process during the
set-point changes is highly demanded. Many approaches
have been developed in improving the adaptability and
robustness of the controller such as self-tuning method,
general predictive control, fuzzy logic, and neural network
strategy. However, predictive control technique may require
more complex control structure while human knowledge
and system’s experts are strongly demanded in adaptive
fuzzy controller. Besides, the crucial work is concentrated in
estimating all of the input-output data within such a complex
system and in determining the appropriate structure of the
neural network controller.

Under these circumstances, enhanced nonlinear PI
(ENon-PI) controller is proposed to compensate the non-
linearity of the control parameters hence to improve the
performance of the conventional linear PI controller. The
design of the ENon-PI controller is basically referred to [9]
where the linear fixed-gain PI controller is cascaded to a
bounded nonlinear gain. As referred to in [9], the nonlinear
gain function has two parameters to be determined in initial
simulation such as the range of variation, 𝑒max, and the rate
of variation, 𝑘

𝑛
. Difficulties come to identify the appropriate

combination of these parameters especially for a complex
nonlinear system. Therefore, modifications to the ENon-PI
to automate one of the parameters are obviously proposed.
The idea is to automatically update 𝑘

𝑛
using simple updating

algorithm, namely, as adaptive interaction algorithm (AIA).
The theoretical of adaptive interaction is previously applied
in neural network and PID control as referred to in [10, 11],
respectively. AIA is generally a technique in which a system
is decomposed into subsystems where an adaptation exists
between them. It is believed that the 𝑘

𝑛
is potential to be

updated with respect to proportional control part as referred
to in [11].

Two case studies are proposed for control design strate-
gies with respect to dynamic behaviors of the WWTP. Case
1 highlights the improvement of the ASP with respect to DO
concentration in all aerated tanks called DO

345
control while

the improvement of nitrogen removal process is aimed in
Case 2. Cases 1 and 2 are considered due to different average
time constant for DO and nitrate which is in minutes and
several hours, respectively. In particular, the WWTP is nat-
urally a multivariable system that is basically described as a
systemwithmore than one control loop. Changes in any input
will generally affect all the outputs due to interaction between

Table 1: List of the acronyms.

Acronyms Descriptions
AE Aeration energy
AIA Adaptive interaction algorithm
ASM1 Activated Sludge Model 1
ASP Activated sludge process
BSM1 Benchmark Simulation Model No. 1
DO Dissolved oxygen
DO
𝑞

Dissolved oxygen control of tank 𝑞, 𝑞 = 3, 4, 5
DO345 Dissolved oxygen control of tanks 3, 4, and 5
𝑒 Error
𝑒
𝑞

Error of tank DO
𝑞
, 𝑞 = 3, 4, 5

ENon-PI Enhanced nonlinear PI
IAE Integral of absolute error
ISE Integral of square error
𝑘non Nonlinear gain
𝑘
𝑛

Rate variation of nonlinear gain
𝐾La𝑞 Air flow rate of tank 𝑞, 𝑞 = 3, 4, 5
𝐾
𝑝

Proportional gain
𝐾
𝑖

Integral gain
Mean(|𝑒|) Absolute error
Max(𝑒) Maximum absolute deviation from set-point
𝑄intr Internal recycle flow rate
Std(𝑒) Standard deviation of the error
WWTP Wastewater treatment plant

the inputs and outputs variables. However, a decentralized
controller is a simple approach of multivariable controller
designs. As a result, the plant to be controlled is essentially
a collection of independent subplants where each element
in the plant may be designed independently. The proposed
Enon-PI is developed in decentralized control structure in
both simulation cases. To further extend, the study on how
the ENon-PI controller performs under various different
dynamic conditions is covered. The proposed ENon-PI con-
troller is then tested to an updated Benchmark Simulation
Model No. 1 (BSM1) with more complex sensors and noises
as updated in [12].

The paper is organized as follows. The BSM1 is explained
in Section 2 while the development of ENon-PI with adap-
tation algorithm is presented in Section 3. The simulation
result and discussion of well-tuned ENon-PI controller are
presented in Section 4. Finally, Section 5 concludes the paper.
For convenience of discussion, Table 1 lists the acronyms that
frequently used in the paper.

2. Benchmark Simulation Model No. 1 (BSM1)

The WWTP used in the simulation is the benchmark
plant developed in [12]; referred as BSM1. The plant con-
sists of five tanks where the first two compartments are
anoxic zones followed by three aerobic tanks as shown in
Figure 1. Each tank is assumed to have constant volume of
1000m3, 1000m3, 1333m3, 1333m3, and 1333m3, respectively.
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Figure 1: The plant layout of the BSM1.

The effluent from the last tank is connected in series to a
settler of constant volume of 6000m3. The BSM1 is widely
used as a standard model based on the most popular IWA
Activated Sludge Model No. 1 (ASM1) proposed in [13]. The
ASM1 was developed as to describe the removal of ammo-
nium nitrogen and organic carbon. Meanwhile, the model
proposed by [14] by was chosen to resemble the behavior of
the secondary settler. The BSM1 is default controlled by PI
controller where two control loops of nitrate in the second
anoxic tank and the DO concentration in the final tank

are emphasized. The performances of the benchmark PI are
always used as comparison to the proposed controller. Detail
on the model can be referred in [12].

2.1. Influent Load. To investigate the performance of the
control strategy in various weather situations, three dynamic
input files including dry, rain, and storm events that have
realistic variations in the effluent flow rate and composition
have been used. The data used for the estimation and control
are sampled with a sampling period of 15 minutes given as

[time 𝑆
𝐼
𝑆𝑆 𝑋

𝐼
𝑋
𝑆
𝑋BH 𝑋BA 𝑋

𝑃
𝑆O 𝑆NO 𝑆NH 𝑆ND 𝑋ND 𝑆ALK 𝑄

𝑜
] . (1)

In any influent: 𝑆O = 0 g(-COD) m3; 𝑋BA = 0 gCODm−3;
𝑆NO = 0 gNm−3; 𝑋

𝑃
= 0 gCODm−3; 𝑆ALK = 7molm−3. The

description of influent’ variables is presented in Table 2.
The dry influent contains two weeks of dynamic dry

weather influent data. The rain influent is based on the dry
weather file with an added rain event during the second
week. Similarly, the storm influent file is also based on the
dry weather file but added with two storm events during the
second week. There is a constant influent with constant flow
and composition that is used during the system simulation
under steady state condition. Refer to [12] for detailed
explanation.

2.2. Performance Assessment. Two-level performance assess-
ment is highlighted in controlling the WWTP. The local
control loop is assessed on the means of absolute error
(Mean(|𝑒|)), the integral of absolute error (IAE), the integral
of square error (ISE), the maximum absolute deviation from
set-point (Max(𝑒)), and the standard deviation of the error
(Std(𝑒)) at the first level. Meanwhile, the second level inves-
tigates the effect of the control strategy on the plant process
operation with respect to economical and quality part. Two
measuring assessments are considered in the simulation such
as the effluent violations and the aeration energy consumed.

2.2.1. The Effluent Violations. Table 3 indicates the con-
straints of the effluent water quality. The flow-weighted aver-
age effluent concentrations of the following variables must

meet their corresponding limitations. Besides, the effluent
violations can be reported through the number of violations
and the percentage time plant is in violation. This quantity
indicates the frequency of the plant effluent increases above
the effluent constraint.

2.2.2.TheAeration Energy. The index of aeration energy (AE)
is described as in (2).𝐾La𝑞(𝑡) is the oxygen transfer coefficient
in each tank, 𝑞. The AE is calculated for the last 7 days, 𝑇 of
the dynamic test weather conditions with unit of kWhday−1.
Consider

AE =
𝑆
𝑜

sat

𝑇 ⋅ 1.8 ⋅ 1000
∫

14days

7days

5

∑

𝑘=1

𝑉
𝑞
⋅ 𝐾La𝑞 (𝑡) 𝑑𝑡. (2)

3. Development of Enhanced Nonlinear
PI Controller

3.1. The Case Study. As mentioned, two case studies are
highlighted for control design strategies.The improvement of
theASPwith respect toDOconcentration in all aerated tanks,
tank 3 (DO

3
), tank 4 (DO

4
), and tank 5, (DO

5
) called DO

345

control is aimed in Case 1. Meanwhile, the improvement of
the nitrogen removal process of nitrate and DO

5
control is

next highlighted in Case 2.

3.1.1. Case 1: Controlling the Aerated Tanks (DO
345

). For
decentralized control structure, the WWTP is partitioned
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Figure 2: ENon-PI control for the last three aerated tanks in Case 1.

Table 2: Influent data.

Variables Descriptions
𝑆
𝐼

Soluble inert organic matter
𝑆
𝑆

Suspended solids
𝑆O Dissolve oxygen
𝑆NO Nitrate
𝑆NH Ammonium and ammonia nitrogen
𝑆ND Soluble biodegradable organic nitrogen
𝑆ALK Alkalinity
𝑋
𝐼

Particulate inert organic matter
𝑋
𝑆

Slowly biodegradable substrate
𝑋BH Active heterotrophic biomass
𝑋BA Active autotrophic biomass
𝑋
𝑃

Particulate products arising from biomass decay
𝑋ND Particulate biodegradable organic nitrogen
𝑄
𝑜

Input flow rate

Table 3: Constraints of the effluent water quality.

Variables Value
Total nitrogen (Ntot) 18 gNm−3

Chemical oxygen demand (COD5) 100 gCODm−3

Ammonia (𝑆NH) 4 gNm−3

Total suspended solids (TSS) 30 g SSm−3

Biochemical oxygen demand (BOD5) 10 g BODm−3

into three SISO subsystems contributing to three ENon-PI
controllers. The implementation of DO

345
control is shown

in Figure 2.

3.1.2. Case 2: Controlling the Nitrate-DO
5
. For the nitrogen

removal process, the ENon-PI controller is set to work
correspondingly to the benchmark PI. The implementation
of the controller is shown in Figure 3.

3.2. The Controller. For a conventional linear PI controller,
the error signal is used to generate the proportional (𝑃) and
integral (𝐼) control actions and to be summed in producing
the control signal as generally expressed as in

𝑢 (𝑡) = 𝐾
𝑝
𝑒 (𝑡) + 𝐾

𝑖
∫

𝑡

0

𝑒 (𝑡) 𝑑𝑡, (3)

where𝐾
𝑝
and𝐾

𝑖
are the proportional and integral coefficients

of the PI controller, respectively. However, the fixed-gains
of conventional linear PI controller have the limitation in
controlling the time-variant characteristics and the process
nonlinearities of the WWTP [15]. This problem can be
alleviated by employing nonlinear elements in the PI control
scheme and thus leads the development of the ENon-PI
controller.

As discussed, the ENon-PI is designed by cascading a
sector-bounded nonlinear gain to linear PI controller as
described in (4).Thenonlinear gain, 𝑘non is a function of error
with respect to the changes of 𝑘

𝑛
, that acts on the error in

producing the scaled error; 𝑓(𝑒) = 𝑘non(𝑒, 𝑘𝑛) ⋅ 𝑒(𝑡). The 𝑓(𝑒)
is then input to the PI controller thus generating the control
action as

𝑢ENon-PI (𝑡) = [𝑘𝑝𝑒 (𝑡) + 𝑘𝑖 ∫
𝑡

0

𝑒 (𝑡) 𝑑𝑡] ⋅ 𝑓 (𝑒)

= [𝑘
𝑝
𝑒 (𝑡) + 𝑘

𝑖
∫

𝑡

0

𝑒 (𝑡) 𝑑𝑡] [𝑘non (𝑒, 𝑘𝑛) ⋅ 𝑒 (𝑡)] .

(4)

The 𝑘non can be expressed by any nonlinear general function
such as sigmoidal function, the hyperbolic function, and the
piecewise linear function as explained in [16]. However, the
𝑘non used in the simulation are described in (5) and (6).



Mathematical Problems in Engineering 5

Nitrate
control

Internal
recycle

Influent 
Effluent 

control 

q = 1 q = 2 q = 3 q = 4 q = 5

DO5KLa5

Figure 3: ENon-PI control for the nitrate-DO
5
in Case 2.
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Figure 4: The block diagram of ENon-PI controller for DO
3
control.

Notice that the 𝑘
𝑛
is automatically updated by the AIA while

𝑒max is the user-defined positive constant. Consider

𝑘non (𝑒, 𝑘𝑛) = [
exp(𝑘𝑛𝑒) + exp(𝑘𝑛𝑒)

2
] , (5)

where

𝑒 = {
𝑒 |𝑒| ≤ 𝑒max,

sign (𝑒) ⋅ √𝑒max
 |𝑒| > 𝑒max.

(6)

3.3. The Algorithm. The work on enhanced nonlinear PID
by [9] is extended to adaptively update the 𝑘

𝑛
. It is believed

that the characteristic of 𝑘
𝑛
is potential to be manipulated

based onAIA.Asmentioned, theAIA is generally a technique
in which a system is decomposed into subsystems where
an adaptation exists between them. The 𝑘

𝑛
is updated with

respect to proportional control part as referred to in [11]. The
typical decomposition of a system for an adaptive interaction
and the detail on AIA can be further referred in [10, 11, 17].

In conjunction to Case 1, DO
3
, DO
4
, and DO

5
control

loops are involved. However, the DO
3
concentration is first

considered to present the applied algorithm. The block dia-
gram of ENon-PI of DO

3
control loop is shown in Figure 4.

𝑦
𝑑3
and 𝑦
3
are desired andmeasured outputs that result in the

error of DO
3
, 𝑒
3
. The 𝑒

3
is then applied by AIA in updating

the 𝑘
𝑛3

for the variation of the 𝑘non3. The integration of the

functional of 𝑘non3 to the PI controller develops the ENon-PI
for DO

3
control.

The aim here is to update 𝑘
𝑛3
of the nonlinear gain for the

third tank using the the AIA so that the performance index
which is the 𝑒

3
as in (7) is minimized. With respect to AIA, it

is believed that interaction/adaptation of 𝑘
𝑛3

exists between
the proportional gain transfer function of 𝑒

3
, 𝐴
3
, and the

functional of the 𝑘non3.The gradient method as given in (8) is
then applied. Consider

𝐸
3
= 𝑒
3

2

= (𝑦
3
− 𝑦
𝑑3
)
2

, (7)

∙

𝑘𝑛3 = −𝛾3

𝑑𝐸
3

𝑑𝑦
3

∘
∙

𝐹 [𝑥
3
] ∘ 𝐴
3

(8)

Υ
3
is the adaptation gain while

∙

𝐹 is the Frechet derivative
in relation to the plant input, 𝑥

3
, and the output, 𝑦

3
. The

adaptation of 𝑘
𝑛3
is then reduced to

∙

𝑘𝑛3 = 2𝛾3 (𝑦3 − 𝑦𝑑3)
∙

𝐹 [𝑥
3
] ∘ 𝐴
3

= 2𝛾
3
𝑒
3

∙

𝐹 [𝑥
3
] ∘ 𝐴
3
.

(9)

The functional 𝐹[𝑥
3
] can be written in the convolution

form as in (10). 𝑔
3
(𝑡) is the impulse response of the linear

time invariant system for DO
3
while ∗ denotes convolution.
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Therefore, the Frechet derivative can be expressed as in (11).
Consider

𝐹 [𝑥
3
] = 𝑔
3
(𝑡) ∗ 𝑥

3
(𝑡) = ∫

𝑡

0

𝑔
3
(𝑡 − 𝜏) 𝑥

3
(𝜏) 𝑑𝜏, (10)

∙

𝐹 [𝑥
3
] ∘ 𝐴
3
= ∫

𝑡

0

𝑔
3
(𝑡 − 𝜏)𝐴

3
(𝜏) 𝑑𝜏 = 𝑔

3
(𝑡) ∗ 𝐴

3
(𝑡) . (11)

However in many practical systems, the Frechet derivative
can be approximated as in (12) where 𝐴

3
is an arbitrary

function and 𝜎
3
is a constant value. Consider

∙

𝐹 [𝑥
3
] ∘ 𝐴
3
= 𝜎
3
𝐴
3
. (12)

This result approximates Frechet tuning algorithm as pre-
sented in

∙

𝑘𝑛3 = 2𝛾3𝑒3

∙

𝐹 [𝑥
3
] ∘ 𝐴
3
= 2𝛾
3
𝑒
3
𝜎
3
𝐴
3
. (13)

Let the adaptive coefficient, 𝜂
3

= 2Υ
3
𝜎
3
and 𝜂

3
> 0
.

The tuning algorithm of 𝑘
𝑛3

thus can be simplified to (14).
Therefore, 𝑘

𝑛3
might change and update it responses with

time referring to the changes of 𝑒
3
in achieving good variation

of the 𝑘non3. The general function of 𝑘non used in the
simulation can be referred in (5). Consider

∙

𝑘𝑛3 = 𝜂3𝑒3𝐴3.
(14)

Taking 𝑦
𝑑4

and 𝑦
4
that represent the desired and measured

outputs which result the error of DO
4
, 𝑒
4
besides 𝐴

4
that

denotes the proportional gain of tank four, the procedures of
(7)–(13) are repeated. This results in an approximate Frechet
tuning algorithm for tank four as described in (15). The same
goes to DO control of tank five thus contributing to 𝑘

𝑛5
as in

(16). Notice that 𝜂
3
, 𝜂
4
, and 𝜂

5
are the adaptation coefficients

of 𝑘
𝑛3
, 𝑘
𝑛4
, and 𝑘

𝑛5
in controlling the DO

3
, DO
4
, and DO

5

concentrations, respectively. For simplicity, the proportional
gains of 𝐴

3
, 𝐴
4
, and 𝐴

5
are always set to 1

∙

𝑘𝑛4 = 𝜂4𝑒4𝐴4,
(15)

∙

𝑘𝑛5 = 𝜂5𝑒5𝐴5.
(16)

In fact, the procedures on (7)–(13) are repeated for nitrate
control loop in Case 2. The tuning algorithm of 𝑘

𝑛2
is then

described in (17). Meanwhile, similar algorithm presented in
(16) is used for DO

5
control. Consider

∙

𝑘𝑛2 = 𝜂2𝑒2𝐴2.
(17)

4. Results and Discussion

The simulation procedures of BSM1 can be referred to in
[12]. In the ideal case, the BSM1 is first simulated for 150
days to attain a quasi-steady-state using the constant influent
input. This is done to guarantee that the initial conditions
of the states are consistent. It then continued with 14-day
simulation of dry influent to set up the plant for the dynamic

benchmark simulation. Finally, the plant is simulated for the
next 14 days with the dynamic test input weather with noises
present. However, only the data of the last 7 days are evaluated
in control assessment. For DO control, the sensor of class
A with a measurement range of 0 to 10 g(-COD)m−3 and a
measurement noise of 0.25 g(-COD)m is used. Meanwhile, a
class B0 sensor with a measurement range of 0 to 20 gNm−3
and measurement noise of 0.5 gNm−3 is applied in nitrate
control. Two case studies are considered in the simulation,
DO
345

control and nitrogen removal process control.

4.1. Case 1: Controlling the DO
345

. The DO concentrations in
tank 3, tank 4, and tank 5 are set to 1.5mg L−1, 3mg L−1, and
2mg L−1, respectively, as referred to in [18]. Nevertheless, the
previous work develops multivariable PID for COST simu-
lation benchmark [19] instead of updated version [12] that is
used in the present simulation. In addition, the oxygen mass
transfer coefficient of DO

3
(𝐾La3), the oxygen mass transfer

coefficient of DO
4
(𝐾La4), and the oxygen mass transfer

coefficient of DO
5
(𝐾La5) are constrained to a maximum of

360 day−1. The 𝑘
𝑛3
, 𝑘
𝑛4
, and 𝑘

𝑛5
are automatically updated

using AIA as described in (14)–(16). Meanwhile, the adaptive
coefficients, 𝜂

3
, 𝜂
4
, and 𝜂

5
are set to 0.09. 𝑒max = 1 is applied

while the proportional gains and the integral time constants
of linear PI controllers are set to 25 and 0.0020, respectively.

4.2. Case 2: Controlling the Nitrate-DO
5
. The nitrate-DO

5

control of the nitrogen removal process is considered in the
second case. The 𝑘

𝑛2
and 𝑘
𝑛5
are automatically updated using

AIA as referred to in (16)-(17). The internal recycle flow
rate (𝑄intr) and the 𝐾La5 are manipulated. To improve the
nitrogen removal, the nitrate concentration is set to 1.0 gm−3
with constrained 𝑄intr up to 5 times of stabilized input flow
rate, 92230m3 day−1. The DO

5
level is set to 2.0 gm−3 with

constrained 𝐾La5 to a maximum of 360 day−1. The 𝜂
2
and 𝜂
5

are similarly set to 0.09while the 𝑒max and the PI control gains
as in Case 1 are maintained in the simulation.

4.3. Discussion. It is aimed to improve the performance
for the set-point tracking of the load changes due to daily
variations in different influents composition. As mentioned,
the effectiveness of the proposed ENon-PI controller is
investigated in two-level assessment, the performance of the
controller and the performance of activated sludge process
compared to benchmark PI.

4.3.1. The Performance of the Controller. The ENon-PI is first
assessed by investigating the Mean(|𝑒|), the IAE, the ISE, the
Max(𝑒), and the Std(𝑒). As for comparison, the performance
of ENon-PI with adaptive 𝑘

𝑛
is also compared to ENon-PI

with fixed 𝑘
𝑛
. For this purpose, the 𝑘

𝑛3
, 𝑘
𝑛4
, and 𝑘

𝑛5
are set

to 0.01 for DO
345

control. Similarly 𝑘
𝑛5
is used for DO

5
while

𝑘
𝑛2
is set to 0.1 for nitrate in nitrate-DO

5
control. Referring to

Table 4, obvious improvement is obtained in Case 1 by ENon-
PI controller compared to benchmark PI controller. However,
as referred to in Table 5, significant improvement is observed
for nitrate compared to DO

5
in Case 2. Difficulties come to
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Table 4: Comparative of controller performance for Case 1.

Benchmark PI Fixed 𝑘
𝑛

Adaptive 𝑘
𝑛

-% -%

Dry

Mean(|𝑒|) 0.0840 0.0695 17.3052 0.0688 18.1381
IAE 0.5883 0.4814 18.1724 0.4813 18.1894
ISE 0.0840 0.0547 34.8616 0.0547 34.8616

Max(dev) 0.3963 0.3101 21.7532 0.3058 22.8382
Std(dev) 0.1095 0.0884 19.2915 0.0884 19.2915

Rain

Mean(|𝑒|) 0.0795 0.0688 13.4939 0.0666 16.2601
IAE 0.5567 0.4665 16.2056 0.4665 16.2056
ISE 0.0747 0.0513 31.3556 0.0512 31.4894

Max(dev) 0.3851 0.2992 22.2958 0.2868 25.5162
Std(dev) 0.1033 0.0856 17.1506 0.0855 17.2474

Storm

Mean(|𝑒|) 0.0809 0.0680 15.8978 0.0672 16.8872
IAE 0.5660 0.4702 16.9229 0.4701 16.9405
ISE 0.0789 0.0523 33.6934 0.0522 33.8202

Max(dev) 0.3792 0.3005 20.7626 0.2970 21.6855
Std(dev) 0.1062 0.0864 18.6057 0.0864 18.6057

Table 5: Comparative of controller performance for Case 2.

Benchmark PI Fixed 𝑘
𝑛

Adaptive 𝑘
𝑛

-% -%

Dry

Nitrate

Mean(|𝑒|) 0.2050 0.2049 0.034151 0.1760 14.13377567
IAE 1.4348 1.2319 14.14134 1.2318 14.14831335
ISE 0.5690 0.3871 31.96478 0.3862 32.12295903

Max(dev) 0.9178 0.8138 11.33338 0.8130 11.42053998
Std(dev) 0.2851 0.2341 17.88558 0.2338 17.99080992

DO5

Mean(|𝑒|) 0.0840 0.0852 −1.37547 0.0815 3.026985865
IAE 0.5883 0.5864 0.324659 0.5707 2.993319848
ISE 0.0840 0.0863 −2.76868 0.0816 2.828222685

Max(dev) 0.3963 0.4184 −5.57392 0.4396 −10.9232671
Std(dev) 0.1095 0.1110 −1.3421 0.1095 0.027389756

Rain

Nitrate

Mean(|𝑒|) 0.2478 0.2068 16.55907 0.2065 16.6801162
IAE 1.7349 1.4479 16.54274 1.4457 16.66954868
ISE 0.7944 0.5435 31.58014 0.5411 31.88227

Max(dev) 0.9213 0.8445 8.340026 0.8431 8.491979074
Std(dev) 0.3369 0.2783 17.38408 0.2776 17.59187793

DO5

Mean(|𝑒|) 0.0795 0.0802 −0.83991 0.0762 4.189508625
IAE 0.5567 0.5514 0.955597 0.5338 4.116970829
ISE 0.0747 0.0763 −2.0968 0.0700 6.333212905

Max(dev) 0.3851 0.4060 −5.44085 0.4342 −12.764576
Std(dev) 0.1033 0.1034 −0.07743 0.0999 3.31010453

Storm

Nitrate

Mean(|𝑒|) 0.2398 0.2037 15.05067 0.2033 15.21748196
IAE 1.6785 1.4257 15.06107 1.4229 15.22788204
ISE 0.7880 0.5454 30.78417 0.5417 31.25372793

Max(dev) 1.2014 0.9644 19.72699 0.9483 21.0670884
Std(dev) 0.3355 0.2788 16.89272 0.2779 17.16994068

DO5

Mean(|𝑒|) 0.0809 0.0818 −1.17001 0.0786 2.787740866
IAE 0.5660 0.5701 −0.72794 0.5502 2.788084385
ISE 0.0789 0.0808 −2.43927 0.0763 3.265885694

Max(dev) 0.3792 0.4137 −9.08659 0.4348 −14.6503533
Std(dev) 0.1062 0.1075 −1.27179 0.1044 1.648610457
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Figure 5: Variation of (a) output and (b) input variables under dry influent of Case 1.
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Figure 6: Variation of (a) error (b) rate variation under dry influent of Case 1.

control simultaneous nitrate and DO
5
control loops in Case

2 that may due to different dynamic behaviours of the control
parameters.

The variation of output and input variables of DO
345

control in Case 1 under dry input weather by ENon-PI with
adaptive 𝑘

𝑛
is shown in Figure 5. It was seen that the ENon-PI

controllerwith adaptive 𝑘
𝑛3
, 𝑘
𝑛4
, and 𝑘

𝑛5
manageswell to keep

DO
3,
DO
4,
and DO

5
concentrations around the reference

values. Besides, the input variables 𝐾La3, 𝐾La4, and 𝐾La5 are
always kept under the upper bounds. Meanwhile, Figure 6
shows the variation of the error and the adaptation of the
𝑘
𝑛
resulted. As observed, higher 𝑘

𝑛
is demanded for a higher

error resulted.
The nitrate-DO

5
control is then simulated with respect

to benchmark PI, as applied in [12]. Figure 7 shows the
comparative variation of output variables of nitrate and DO

5

under rain input weather. Slight improvements are observed
by ENon-PI with adaptive 𝑘

𝑛2
and 𝑘

𝑛5
for nitrate and DO

5

concentrations compared to benchmark PI. Nevertheless, the
improvements are obviously better than the fixed 𝑘

𝑛
. The

variations of input variables of nitrate-DO
5
control are next

illustrated in Figure 8. Similarly, the𝑄intr and𝐾La5 are always
kept under the upper bounds.Meanwhile, the variation of the
errors and the adaptation of the rate variation resulted are
illustrated in Figure 9.

4.3.2. The Performance of Activated Sludge Process. The
second level of controller assessment is to investigate the
effect of the ENon-PI control strategy on the process of
an activated sludge. Firstly, the performances in average
effluent concentrations are compared to benchmark PI and
the fixed 𝑘

𝑛
, as indicated in Tables 6 and 7 for Cases 1and 2,
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5
output variables under rain influent of Case 2.
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Figure 8: Variation of (a) 𝑄intr (b) 𝐾La5 input variables under rain influent of Case 2.

respectively. Five main process variables including the total
𝑆NH, Ntot, BOD5, COD, and TSS are evaluated. The limit
of effluent variables can be referred in Table 3. Overall in
Case 1, in spite of total COD concentration, improvement on

average effluents has been observed by ENon-PI compared
to benchmark PI. Obvious enhancement on the 𝑆NH resulted
by ENon-PI with adaptive 𝑘

𝑛
compared to benchmark PI

under three input weathers. In particular, the improvement
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Figure 9: Variation of (a) error (b) rate variation under rain influent of Case 2.

Table 6: Average effluent concentrations for Case 1.

Dry Rain Storm
Benchmark

PI
Fixed
𝑘
𝑛

Adaptive
𝑘
𝑛

Benchmark
PI

Fixed
𝑘
𝑛

Adaptive
𝑘
𝑛

Benchmark
PI

Fixed
𝑘
𝑛

Adaptive
𝑘
𝑛

𝑆NH conc
/mgN/L 2.5392 2.3896 2.3881 3.226 3.2041 3.1954 3.0622 3.0395 3.041

TSS conc
/mg SS/L 13.0038 13.0038 13.0038 16.1768 16.175 16.1750 15.2737 15.2773 15.2724

Ntot conc
/mgN/L 16.9245 16.8500 16.8505 16.9245 14.6539 14.6719 15.8676 15.7662 15.7666

Total COD
conc/mgCOD/L 48.2201 48.2420 48.2427 45.4337 45.4314 45.4479 47.6626 47.6631 47.6639

BOD5 conc/mg/L 2.7568 2.7615 2.7615 3.4557 3.4548 3.4557 3.2050 3.2049 3.2045

Table 7: Average effluent concentrations for Case 2.

Dry Rain Storm
Benchmark

PI
Fixed
𝑘
𝑛

Adaptive
𝑘
𝑛

Benchmark
PI

Fixed
𝑘
𝑛

Adaptive
𝑘
𝑛

Benchmark
PI

Fixed
𝑘
𝑛

Adaptive
𝑘
𝑛

𝑆NH conc
/mgN/L 2.5392 2.5128 2.5126 3.226 3.2041 3.1954 3.0622 3.0395 3.0390

TSS conc
/mg SS/L 13.0038 13.0058 13.0058 16.1768 16.1798 16.1750 15.2737 15.2733 15.2734

Ntot conc
/mgN/L 16.9245 16.8169 16.8160 16.9245 14.6539 14.6719 15.8676 15.7672 15.7666

Total COD
conc/mgCOD/L 48.2201 48.2201 48.2201 45.4337 45.4314 45.4479 47.6626 47.6638 47.6639

BOD5 conc/mg/L 2.7568 2.7560 2.7560 3.4557 3.4548 3.4549 3.2050 3.2049 3.2049

of 𝑆NH is maintained by ENon-PI with adaptive 𝑘
𝑛
in Case 2.

Besides, improvement on Ntot was recorded under dry and
storm influents.

Next, the numbers of time that the effluent limits are not
met during simulation obtained by ENon-PI for Case 1 are
presented in Tables 8 and 9.The number of violation of Ntot is

observed under dry weather while it is extended to TSS under
the storm weather. It was proved that the numbers of the
effluent increases above the effluent constraints are reduced
from 7 to 6 compared to benchmark PI under dry weather. In
the meantime, it reduces from 7 to 5 and 2 to 1 for Ntot and
TSS under storm weather condition, respectively. To clarify,
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Figure 10: Effluent violations of Ntot for (a) dry (b) storm influents.

Table 8: Effluent violations under dry influent.

Benchmark PI ENon-PI

Ntot

Days 1.2813 1.1042
% 18.3036 15.7738

Occasion 7.0000 6.0000

the Ntot effluent violation compared to benchmark PI under
dry and storm influents is shown in Figure 10.

Next, the averageAE consumed in the process of activated
sludge is illustrated in Figure 11. As observed in Case 1, the
AE is significantly reduced by ENon-PI with adaptive 𝑘

𝑛

compared to benchmark PI under rain and storm events
where the AE is minimized by 140.3118 and 46.7117 kwh
per day, respectively. Meanwhile, about 0.5474 kwh per day

Table 9: Effluent violations under storm influent.

Benchmark PI ENon-PI

Ntot

Days 1.0938 0.9167
% 15.6250 13.0952

Occasion 7.0000 5.0000

TSS
Days 0.0208 0.0104
% 0.2976 0.1488

Occasion 2.0000 1.0000

of AE is saved with adaptive 𝑘
𝑛
compared to fixed 𝑘

𝑛
of

ENon-PI controller under storm weather which is the lowest
AE consumption in Case 2. In fact, even though slight
improvements were recorded by Non-PI in Case 2 but the AE
is mostly better than the benchmark PI controller.
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Figure 11: Comparative of aeration energy consumed (in kWh per day) for (a) Case 1 and (b) Case 2.

5. Conclusion

The aim of this paper is to design a simple but effective
controller so that the performance of activated sludge process
DO concentration control (Case 1) and the nitrogen removal
(Case 2) of the WWTP are improved. For this work, the
enhanced nonlinear PI (ENon-PI) controller is designed in
which the conventional fixed-gain PI controller is incorpo-
rated with the bounded nonlinear function as to compensate
the nonlinearity of the WWTP. The characteristic of the
rate variation, 𝑘

𝑛
, is manipulated and automatically adapted

based on adaptive interaction algorithm for a wide range of
nonlinear gain.

From simulation, significant improvement is proved for
DO
345

control by ENon-PI compared to benchmark PI.
Notice that the Case 1 deals with similar dynamic behaviors
of DO concentrations, thus it easier to be controlled. In
contrast, difficulties to control the simultaneous nitrate and
DO
5
concentrations forCase 2 are undeniable due to different

natures of both control parameters. Even though slight
improvements were recorded by Non-PI in Case 2 but it is
mostly better than the benchmark PI controller.

The effectiveness to simplify the ENon-PI control struc-
ture with adaptive 𝑘

𝑛
has been proved with significant

improvement on both case studies. The performance com-
parison indicates that the proposed ENon-PI yields the
most accurate strategy to control the DO concentration and
the nitrogen removal process. For DO

345
control, obvious

improvement resulted where about 34.86%, 31.4894%, and
33.8202% of ISE are reduced compared to benchmark PI
under dry, rain, and storm weathers, respectively. Again,
more than 30% of ISE is reduced under three dynamic
influent weathers, specifically for nitrate in nitrogen removal
control. Meanwhile, more than 14% of IAE is reduced both
simulation cases. Better average effluent concentrations and
less number of the effluent violations resulted. Besides, lower
average aeration energy is consumed specifically under rain
and storm influents for DO

345
control and in nitrate removal

process, respectively. The proposed ENon-PI shows benefit
for simple and practical implementation in controlling var-
ious dynamic natures of the activated sludge process.
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