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In this paper, effects of heat and mass transfer on peristaltic transport of Walter's B fluid in an 

asymmetric channel are investigated. The governing equations are solved using regular perturbation 

method by taking wave number as a small parameter. Expressions for the stream function, temperature 

distribution, heat transfer coefficient, and mass concentration are presented in explicit form. Solutions 

are analyzed graphically for different values of arising parameters such as viscoelastic parameter, 

Prandtl, Eckert, Soret, Schmidt and Reynolds number. It has been found that these parameters 

considerably affect the considered flow characteristics. Results show that with an increase in Eckert and 

Prandtl number temperature and heat transfer coefficient increase while mass concentration decreases. 

Further, Mass concentration also decreases with increasing Soret and Schmidt number. 
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Introduction 

 

Peristalsis is a natural mechanism of fluid motion inside the living tracts induced by the wavy motion of 

the tract boundaries. This wavy motion is sinusoidal in nature [1] and responsible for mixing and 

transportation of contents with in the tubes. The examples found in the living body include motion of 

food in the gastrointestinal tract, motion of secretions in glandular ducts, transport of urine in the cervical 

canal and others. In industrial applications, it is involved in artificial heart and ortho-pumps, heart lung 

machines, transport of toxic material, waste inside the sanitary ducts and others. The above mentioned 

situations usually involve the fluid having non-Newtonian behaviour with some elastic characteristics 

because most of them are the suspension of particles in Newtonian fluid with fading memory. Walter's B 

fluid model with limiting viscosity at low shear rates and short memory coefficient [2] is the best model 

for above mentioned situations as discussed in literature [3-9]. 

 

It is evident from the work of Vries et al. [10] that the intrauterine fluid flow with myometrial 

contractions is asymmetric in nature. Also, nonpregnant uterus exhibits contractions with variable 

amplitudes, frequencies and wavelengths [11]. These facts prompt to consider the asymmetric 

configuration in the present problem. Because of the intricate nature of the biofluid dynamics, both heat 

and mass transfer occur simultaneously giving complex relations between fluxes and driving potentials 

examples oxygenation of blood, hemodialysis, heat conduction in tissues, heat transfer due to perfusion of 

arterial-venous blood, metabolic processes involved in digestion of food and others. Mostly, the fluid 

flow is governed by the temperature gradient or composition gradient. When the mass flux is caused by 

the temperature gradient, it is called Soret effects (thermal-diffusion). Soret effects are used for the 

separation of isotopes. These effects are often negligible in heat and mass transfer analysis, but for the 

fluids with light (Helium) or medium (air) molecular weights, it is not appropriate to neglect these effects 

[12,13]. 

 

Much attention has been paid on heat and mass transfer analysis of Newtonian fluid [14-19]. Muthuraj 

and Srinivas [20] studied mixed convective heat and mass transfer in a vertical porous channel. They 

considered the MHD viscous fluid flow induced by thermal waves. They obtained solutions comprising of 
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two parts namely: mean solution and perturbed solution, using regular perturbation method. Srinivas et al. 

[21] considered the mixed convective heat and mass transfer on peristaltic flow of viscous fluid in a 

vertical asymmetric channel. They linearized the governing equations in wave frame assuming long 

wavelength. Then, they obtained analytical solutions about small wave number using perturbation 

method. They considered Soret and Dufour effects in their investigation. Srinivas et al. [22] extended the 

work of Srinivas et al. [21] by investigating the effects of space porosity and chemical reactions on mixed 

convective heat and mass transfer of MHD peristaltic transport. They considered the flow of viscous fluid 

through a vertical porous asymmetric channel. They followed the similar approach for solutions but 

neglected the Soret and Dufour effects in this problem. A detailed study on thermal-diffusion and 

diffusion-thermo effects on the flow of viscous fluid is conducted by Srinivas et al. [23]. They considered 

the flow between two slowly contracting and expanding weakly permeable, porous walls. They linearized 

the governing equations by assuming symmetric injection or suction and similarity transformations. 

Following Berman’s classic approach, they obtained solutions using perturbation method twice, first for 

small permeation Reynolds number and second for small wall dilation parameter. 

 

Because of the different rheological properties of non-Newtonian fluids, there is no single constitutive 

relationship between stress and rate of strain by which all the non-Newtonian fluids can be examined. 

Therefore, several models of non-Newtonian fluids have been suggested and considered. Heat and mass 

transfer on peristaltic flow of different non-Newtonian fluid models have been studied by [24-26]. 

Recently, peristaltic flow of hyperbolic tangent fluid in an annulus with heat and mass transfer is studied 

by Akbar et al. [27]. They obtained both analytical and numerical solutions under long wavelength 

approximation. Further, Nadeem and Akbar [28] studied the effects of induced MHD and heat and mass 

transfer on peristaltic transport of Johnson Segalman fluid in an asymmetric vertical channel. They 

obtained the solutions by three different methods: perturbation method, homotopy analysis method and 

shooting method. Moreover, Hayat and Hina [29] investigated the effects of slip and compliant walls on 

heat and mass transfer of peristaltic flow of Williamson fluid in a nonuniform channel. Their solutions are 

valid for small Wissenberg number. However, to the best of our knowledge, no one investigated the 

effects of heat and mass transfer on peristaltic flow of Walter’s B fluid in an asymmetric channel which is 

of considerable interest in physiological and industrial research. Motivated by the facts discussed above, 

in the present problem, peristaltic flow of Walter's B fluid in an asymmetric channel with heat and mass 

transfer is addressed. In addition, Viscous dissipation and Soret effects are given due attention. The 

governing equations are solved adopting long wavelength and small Reynolds number approximations. 

Finally, the results are graphically presented and discussed for several pertinent parameters. 

 

Formulation of the problem 

 

 
Fig. 1. Sketch of the physical model 
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Two dimensional flow of an incompressible Walter's B fluid in an asymmetric channel is considered. The 

fluid is caused to flow due to the sinusoidal waves of different amplitudes and phases moving along the 

channel walls with constant speed c. The upper and lower walls are at distance 1d  and 2d  from the 

centerline ( 0)Y   of the channel. The upper wall is maintained at temperature 0T  and lower wall is 

maintained at temperature 1T , respectively. The sketch of the physical model is given in Fig. 1. 

  

Under these assumptions the continuity, momentum, energy and concentration equations are 
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with boundary conditions and geometries of the channel walls 1H  and 2H  
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In the above expressions, Eqs. (1)-(13)   is the fluid density, P  the pressure, T  the fluid temperature, 

C  the fluid concentration, k  the thermal conductivity,   the specific heat at constant volume, mT  the 

temperature of the medium, D  the coefficient of mass diffusivity, TK  the thermal-diffusion ratio, U  the 

longitudinal velocity component, V  the transverse velocity component, ( 1,2)ia i   the wave amplitudes 

at upper and lower walls,   the wave length, t  the time and   is the phase difference varying in the 

range 0    , ( 0   leads us to the symmetric channel with waves out of phase and   , the waves 

are in phase). Moreover, ia , id  and   satisfy the condition 

 
2 2 2
1 2 1 2 1 22 cos ( ) .a a a a d d            (14) 

 

The extra stress tensor S  for Walter's B fluid satisfies the constitutive relationship (see [3]), is given as 
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where e  is the rate of strain tensor, 
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e  the convected differentiation of rate of strain tensor in relation to 

the material in motion, 0  the limiting viscosity at small shear rates and 0k  is the short memory 

coefficient. 

 

Defining the following transformations 
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and letting the stream function   related to the velocity components u  and v  by the relations 
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the continuity equation is satisfied and Eqs. (2)-(14) reduce to forms 
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with boundary conditions and wall geometries 1( )h x and 2 ( )h x  
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Here,   is the wave number, Re  the Reynold number,   the viscoelastic parameter, Er the Eckert 

number, Pr the Prandtl number, Sc the Schmidt number, Sr the Soret number and geometry parameters

1 1 2 1 2 1/ ,  / ,  and /a a d b a d d d d    satisfy the condition 
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which is related with dimensionless average flux in the laboratory frame  , by the relation 

 
1 .F d               (34) 

 

Solution of the problem 

 

Eqs. (20)-(28) with boundary conditions (29) and (30) are solved using regular perturbation method. For 

perturbation solutions we expand the flow quantities in term of small wave number ),1(   as 
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After substituting Eq. (35) into Eqs. (20)-(28) with boundary conditions (29) and (30) and comparing the 

coefficients of powers of  , we obtain the system of equations as follows: 
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Substituting Eq. (39) into Eqs. (36)-(38) and then solving the resulting system, we obtain the solutions up 

to 0( )O   as  
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To calculate heat transfer coefficient at upper and lower wall (see [21]) we used  
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First order system 

 

The first order system is 
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Using zeroth order solutions Eqs. (42)-(45) into the first order system Eqs. (48)-(56) and then solving the 

resulting system, we obtain 
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The heat transfer coefficient at upper and lower wall is calculated by the relations 
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1
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All coefficients appearing in the above expressions of solutions are calculated by usual lengthy algebra 

that involved in regular perturbation method. 

 

Discussion 

 

The effects of viscoelastic parameter ,  Reynold number Re, Prandtl number Pr, Eckert number Er, Soret 

number Sr, Schmidt number Sc and phase difference   appearing in solutions of the stream function ,  

temperature distribution ,  mass concentration field   and heat transfer coefficient Z  are discussed 

presented graphically in this section. Figs. 2-11 present the effects of these parameters on the flow. 

 

Figs. 2 and 3 show the influence of   and Re  on shear stress xyS . It is observed that shear stress is 

smaller near beginning and ending of the wave but becomes larger in the central region. Figs. 2(i) and 

2(ii) show that at the upper (lower) wall, xyS  increases (decreases) in the first half of wave then decreases 

(increases) in the second half of wave with increasing  . However, in Figs. 3(i) and 3(ii) it is depicted 

that at the upper (lower) wall shear stress decreases in the first half of wave whereas it increases 

(decreases) in the second half of wave with increasing Re. 

 

Figs. 4 and 5 display the temperature distribution   against y  with the variation of parameters Er, Pr and 

 . As anticipated, temperature profiles are almost parabolic concaved downward. These temperature 

profiles are greater near the upper wall which parabolically decreases moving toward the lower wall. It is 

worth to mention that in Fig. 4(i) with the absence of viscous dissipation ( Er 0)  the temperature 

profiles are linear. Further, it is noticed in this figure and Fig. 4(ii) that the temperature increases with 

increasing Pr and Er. Fig. 5(i) shows that temperature decreases with increasing ( 1),    whereas in Fig. 

5(ii) it is seen that temperature increases with increasing ( 1)   . 

 

Figs. 6 and 7 portray the influence of Er, Pr, Sc and Sr on mass concentration  . It is clearly observed 

that concentration field is parabolic concaved upward. This mass concentration   is smaller near the 

lower wall which becomes larger moving towards the upper wall. It is noted that the variation in   is less 

near the walls as compared to center of the channel. It is also noticed from these figures that   decreases 

with increasing Er, Pr, Sc and Sr. 

 

Finally, Figs. 8-11 present the coefficients of heat transfer 
1hZ  and 

2hZ  for different values of Er, Pr,   

and   at upper and lower walls, respectively. Oscillatory behaviour is observed in all figures which is 

due to the propagation of peristaltic waves along the walls of the channel. Further, it is noticed that the 

absolute value of heat transfer coefficient increases with increasing Er, Pr, and . It is also noted in Fig. 

11 that the absolute value of heat transfer coefficient increases at the upper wall but decreases at lower 

wall of the channel with increasing . 
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Fig. 2. Effects of κ  on (i) 
1xy(h )S

 
(ii) 

2xy(h )S  with x when a = 0.7, b = 1.2, d = 2,  = π/6, θ =1,  

δ = 0.02, Re = 1  

Fig. 3. Effects of Re  on (i) 
1xy(h )S

 
(ii) 

2xy(h )S  with x when 2a = 0.7,b = 1.2,d = 2, = π/ , θ =1,  

δ = 0.02, κ = 2  

Fig. 4. Temperature profile η for fixed a = 0.5,b = 1.2,d = 1, = π/2,θ =1,δ = 0.01,κ = 0.1,Re = 5,x = 0.5  

(i) Pr = 5 (ii) Er = 4 
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Fig. 5. Temperature profile η for fixed a = 0.5,b = 1.2,d = 1, = π/2,δ = 0.01,κ = 0.1,Re = 5, ,x = 0.5  
Pr = 1,Er = 4(i)θ <1(ii)θ >1  

Fig. 6. Concentration profile   for fixed a = 0.5,b = 1.2,d = 1,θ =1, = π/2,δ = 0.01,κ = 0.1,Re = 5,  
,x = 0.5 Sc = 1,Sr = 4(i)Pr = 4(ii)Er = 4  

Fig. 7. Concentration profile   for fixed a = 0.5,b = 1.2,d = 1,θ =1, = π/2,δ = 0.01,κ =1,Re = 5,  
,x = 0.5 Pr = 1,Er = 4(i)Sc = 1(ii)Sr = 1  
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Fig. 8. Heat transfer coefficient (i) 
1hZ  at upper wall (ii) 

2hZ  at lower wall for fixed a = 0.4,  
b = 1.2,d = 1.5,θ = 0.5, = π/12,δ = 0.01,κ = 0.1,Re =1,Pr = 1  

Fig. 9. Heat transfer coefficient (i) 
1hZ  at upper wall (ii) 

2hZ  at lower wall for fixed a = 0.4,  
b = 1.2,d = 1.5,θ = 0.5, = π/12,δ = 0.01,κ =1,Re =1,Er = 2  

Fig. 10. Heat transfer coefficient (i) 
1hZ  at upper wall (ii) 

2hZ  at lower wall for fixed a = 0.4,  
b = 1.2,d = 1.5,θ = 0.5, = π/12,δ = 0.01,Pr =1,Re =1,Er = 2  



12 
 

Fig. 11. Heat transfer coefficient (i) 
1hZ  at upper wall (ii) 

2hZ  at lower wall for fixed a = 0.4,  
b =1.2,d =1.5,θ = 0.5,κ =1,δ = 0.03,Pr =1,Re =1,Er =1 

 

Conclusion 
 

In this study, the problem of heat and mass transfer on peristaltic flow of Walter's B fluid in a two 

dimensional asymmetric channel is considered. The resulting equations are solved for small wave number 

using regular perturbation method. The solutions are analyzed and verified graphically. It can be seen 

from the temperature and concentration profiles that the solutions obtained clearly satisfy the boundary 

conditions at upper ( 0,  0)    and lower ( 1,  1)    walls. Results show that the temperature and 

concentration profiles are parabolic and significant variations lie in the center of the channel due to 

viscous dissipation. In the absence of viscous dissipation and Soret effects, temperature and concentration 

profile becomes linear. Temperature of the fluid increases with increasing Eckert and Prandtl number 

while mass concentration decreases with increasing Soret and Schmidt number. On the other hand, the 

shear stress increases at the upper wall but decreases at lower wall with increasing . The behaviour of 

heat transfer coefficient is oscillatory which is due to propagation of peristaltic waves. As a limiting case 

of Newtonian fluid when 0,  0,  and Re 0    , our results reduce to those obtained by Mishra and 

Rao [25]. 
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