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Abstract. Several findings on soliton solutions generated by the Kadomtsev-Petviashvili (KP)
equation were discussed in this paper. This equation is a two dimensional of the Korteweg-de Vries
(KdV) equation. Traditional group-theoretical approach can generate analytic solution of solitons
because KP equation has infinitely many conservation laws. By using Hirota Bilinear method, we
show via computer simulation how two solitons solution of KP equation produces triad, quadruplet
and a non-resonance structures in soliton interactions.
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Abstrak. Beberapa keputusan tentang penjanaan penyelesaian soliton oleh persamaan
Kadomtsev-Petviashvili akan dibincangkan dalam kertas ini. Kaedah teori kumpulan mampu
memberikan penyelesaian secara analitik kerana persamaan KP mempunyai ketakterhinggaan
banyaknya hukum keabadian. Dengan kaedah Bilinear Hirota, ditunjukkan melalui simulasi
berkomputer bagaimana penyelesaian dua soliton persamaan KP mampu menghasilkan struktur-
struktur “triad”, kuadruplet dan struktur tak beresonan dalam interaksi soliton.

Kata kunci: Soliton, kaedah Bilinear Hirota, persamaan Kortewegde Vries dan Kadomtsev-
Petviashvili

1.0 INTRODUCTION

There are many examples of resonance in physics. However, resonance in soliton
interaction is an interesting phenomena. In this paper, we will use the Kadomtsev-
Petviashvili (KP) equation to model the two-soliton interactions as in Ong [1] and
also in Anker and Freeman [2]. In particular, the KP equation is the two-dimensional
form of the Korteweg-de Vries (KdV) equation. Miles [3, 4] discovered that in the
interaction of two solitons, the interaction region between the incident solitons and
the centered-shifted solitons after interaction is essentially itself a single soliton which
leads to a very simple conceptual picture of the interaction process. This interacting
soliton is the resonant soliton associated with the resulting solitary waves form by
two incident solitons.
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2.0 TWO-SOLITON SOLUTIONS- KP EQUATION

Generally, the KP equation can be written as:
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3 2

3 26 3 0
u u u u

u
x t x y y (1)

and can be simply written as:

( )+ + + =6 3 0t x xxx yyx
u u u u u (2)

We will consider the linearized form of Equation (2), then we have plane-wave
solutions whose phase variable kx + my – wt satisfied the dispersion relation
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N – soliton solutions for Equation (2) had been solved by Satsuma [5] using
Hirota Bilinear method [6] as:

( ) ∂=
∂

2

2, , 2 lnu x y t f
x

(4)

 −
=  

 

2

22 xx xf f f

f (5)

with the function f given by
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Thus,
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By using Microsoft Visual C++ Professional Edition, we will generate a computer
programming to portray the 2-soliton solutions of Equation (2) and later produce
various Encapsulated Postscript (eps) files. These results were demonstrated in
computer simulation section.

3.0 RESONANCES IN THE KP EQUATION

There are three types of resonances in KP solitons interaction which are full resonance,
partial resonance and non-resonance as in Ong [1]. Resonance will only occurs
when the value of A12 is very close to zero. Therefore, the values of n1, n2, l1 and l2
will determine the resonance structure. If we fix the values of l1 and l2, then n1 and
n2 will determine the value of A12. We will show this effect in the following section.

3.1 Full Resonance

We need to have a situation where n1 = n2 or l1 = l21 so that ln A12 tends to –∞ or
simply A12 will be zero. Therefore, we shall fix the values of l1 and l2 but l1 ≠ l2 and
consider the case where n1 = n2. Therefore, Equation (12) will become:

( )

( )
( )

( )
( )

ε η ε η= + +1 1 2 2

1 2 3

1 exp expf
(14)

Any combinations between (1), (2) and (3) will form a new soliton. We can observe
that the first soliton, S1, second soliton, S2 and the resonant soliton, S23 can be
represented by the function f as below.

Soliton 12 : ( )ε η= + 1 11 expf (15)

Soliton 13 : ( )ε η= + 2 21 expf (16)

Soliton 23 : ( ) ( )1 1 2 2exp expf ε η ε η= + (17)
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When the term ln A12 tends to –∞, the length of resonant soliton will increase and
this will form a triad as shown in Figure 1.

3.2 Partial Resonance

In this case, we will consider the case of n1 ≈ n2 so that the values of A12 will be so
close to zero. Thus we have Equation (12) again with A12 ≈ 0. The value of A12 will
determine the length of resonant soliton S23. In this case, we will have an interaction
pattern called quadruplet as shown in Figure 2, which represents the partial resonant
structure.

Figure 2 A quadruplet
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From Figure 2, when S1 and S2 come into interaction, it will produce a resonant
soliton S23 and later break up again to form S*1 and S*2 which are actually soliton S1
and S2 respectively, but of course with some phase shift.

3.3 Non-Resonance

For the non-resonance case, we will take n1 ≠ n2 that A12 ≈ 1. This means that the line
S23 no longer exists. This phenomena is called non-resonance interactions. In this
cases, S1 will be centered along the line k1x + m1y = 0 whereas S2 will be centered
along the line k2x + m2y = 0 with

Figure 1 A triad
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In this case, α is the angle of interaction between S1 and S2 and β1, β2 are the
tangents of the lines respectively. In this case, we will have an interaction pattern
called cross as shown in Figure 3, which represents the non-resonance structure.

Figure 3 A cross
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4.0 COMPUTER SIMULATIONS

By using Microsoft Visual C++ Professional Edition, we will generate a computer
programming to portray the 2-soliton solutions of Equation (2) and later produce
various graphical outputs by using GnuPlot to produce various Encapsulated Postscript
(eps) files. A simple computer program written to portray the 2-soliton solutions of
the KP equation is given in the following subsection.

4.1 Computer Program for 2-KP Solitons

#include < iostream.h >
#include < fstream.h >
#include < math.h >
#define N 500

void main(  )
{

double k1, k2, A12, t, f, f1, f2, al, a2;
double x[N + 1], u[N + 1], y;
double n1, n2, l1, l2, ml, m2, wl, w2, Eta1, Eta2, Epsilon1, Epsilon2;
int i;
ofstream ofp;
ofp.open(“1.out”,ios::out);
n1 = 3; n2 = 3 + exp(–10); l1 = –2; l2 = 3; t = 1;
k1 = l1 + n1;
k2 = l2 + n2;
a1 = 1;
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a2 = 1.3;
m1 = n1*n1 – l1*l1;
m2 = n2*n2 – l2*l2;
w1 = –((3*ml*ml/k1) + (k1*k1*k1));
w2 = –((3*m2*m2/k2) + (k2*k2*k2));
Epsilon1 = a1/k1;
Epsilon2 = a2/k2;
A12 = ((l1 – l2)*(n1 – n2))/((l2 + n1)*(l1 + n2));
y = –40;
while (y< = 40)
{

x[0] = –50;
for(i = 0; i< = N; i++)
{

Eta1 = k1*x[i] + m1*y – w1*t;
Eta2 = k2*x[i] + m2*y – w2*t;
f = 1 + Epsilon1*exp(Etal) + Epsilon2*exp(Eta2)

+ Epsilon1*Epsilon2*A12*exp(Eta1 + Eta2);
f1 = k1*Epsilon1*exp(Eta1) + k2*Epsilon2*exp(Eta2)

+ (k1 + k2)*Epsilon1*Epsilon2*A12*exp(Eta1 + Eta2);
f2 = k1*k1*Epsilon1*exp(Eta1) + k2*k2*Epsilon2*exp(Eta2)

+ (k1 + k2)*(k1 + k2)*A12*Epsilon1*Epsilon2*exp(Eta1 + Eta2);
u[i] = 2*((f*f2 – f1*f1*)/(f*f));
if(u[i] –0.05>0 || u[i] + 0.05<0)

ofp << x[i] << “  ” << y << “  ” << u[i] << “ ” <<
endl;

x[i + 1] = x[i] + 0.16;
}
y+ = 1;

}
ofp.close();

}

4.2 Computer Simulations Full Resonance

For the full resonance, the values of n1, n2, l1 and l2 were chosen as below:

n1 = 3, n2 = 3, l1 = –2, l2 = 3, (A12 = 0) (19)

By using these values, the computer simulation produces triad as shown in
Figure 4.

JTJUN44C[3].pmd 02/15/2007, 18:5728



TWO-SOLITON SOLUTIONS OF THE KADOMTSEV-PETVIASHVILI EQUATION 29

4.3 Computer Simulations Partial Resonance

On the other hand, if we choose

n1 = 3, n2 = 3 + exp(–p), l1 = –2, l2 = 3, (A12 ≈ 0) (20)

with p = 20 for the partial resonance, we will get a quadruplet representing the
partial resonant soliton. The bigger the value of p in n2, the longer will be the
resonant soliton S23.

Figure 4 3D plot of a triad

(a) p = 10

40

30
20

10

0
-10

-20
-30

-40
403020

10
0-10-20-30-40

U (x, y, t)

(b) p = 20

Space, y

Space, x

Space, y

Space, x

15

10

5

0

-5

-10

-15
15

10
5

0-5
-10

-15

U (x, y, t)

Space, y

Space, x

15

10

5

0

-5

-10

-15
15

10
5

0
-5

-10
-15

U (x, y, t)

JTJUN44C[3].pmd 02/15/2007, 18:5729



TIONG WEI KING, ONG CHEE TIONG & MUKHETA ISA30

4.4 Computer Simulations Non-Resonance

While for the non-resonance, we have

n1 = 1, n2 = 3, l1 = 2, l2 = 3, (A12 = 1) (21)

The values of l1 and l2 are specifically chosen to ensure that the amplitude of
solitons are positive. The amplitude of first soliton S1 and second soliton S2 were
determined by 21

2 ik  with i = 1, 2 and ki as defined in Equation (8). The value of ki
must be positive to produce positive amplitude of the solitons. With this conditions,
we will have a cross as shown in Figure 6.

Figure 5 A set of quadruplet with different values of p

(c) p = 30

Figure 6 3D plot of a cross
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5.0 CONCLUSION

From the computer simulations, we observed that there were three different resonance
structures in two-soliton solutions of the KP equation which are full resonance, partial
resonance and non-resonance structures. In partial resonance, the value of A12 played
an important role in determining the length of the resonant soliton S23. In future, we
intend to study the interactions patterns of three-soliton solutions in the KP equation
and try to model some of the physical phenomena by using the KP equation in
marine ocean basin.
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