
Int. J. Advance Soft Compu. Appl, Vol. 5, No. 3, December 2013

ISSN 2074-8523; Copyright © SCRG Publication, 2013

 Multi-Criteria Architecture Style Selection

for Precision Farming Software Product Lines

Using Fuzzy AHP

Mohd Z.M. Zaki
1
, Dayang N.A. Jawawi

1
, Norazian M. Hamdan

2
, Shahliza

Abd. Halim
1
, Rosbi Mamat

3
, Fairuz S. Mahat

1
, and Nur Athirah Omar

1

1

Software Engineering Department, Faculty of Computing, Universiti Teknologi

Malaysia, 81310 Johor Bahru, Johor, Malaysia

{zulkiflizaki, dayang, shahliza}@utm.my, {fsafwan,nurathirahomar}@gmail.com
2

Faculty of Computer Science and Information Technology, Universiti Malaysia

Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

mhnorazian@fit.unimas.my
3

Department of Control Engineering and Mechatronic Engineering, Faculty of

Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor, Malaysia

rosbi@fke.utm.my

Abstract

 Precision Farming (PF) system is an alternative and innovative
approach to improve the quality and production of crop yields.
However, due to heterogeneity and user demands, PF system
complexity has become higher. As such, software complexity has
always been an issue in software development, especially for larger
systems with innovative functionalities. One solution by which to
reduce the problem of software complexity is by incorporating
software reuse. Software Product Line (SPL) is a strategic reuse
approach, which targets common artefacts for its product line while
having a variability management mechanism to cater for variability
in individual applications. This research proposes an integrated
approach of SPL with architecture style selection and component-
based design for the precision farming domain. The focus of this
paper is to highlight the process of architecture style selection in the
proposed approach, which involves a multi-criteria design decision.
The selection process uses a fuzzy analytic hierarchy process (fuzzy
AHP) in order to select the best architectural style, which can fulfil
most of the sought-after criteria for precision farming product line
application.

 Keywords: Precision Farming, Software Product Lines, Software
Architecture, Fuzzy AHP.

Mohd Z. M. Zaki et al. 2

1 Introduction

Towards the 21
st
 century, information technologies have been rapidly advancing

and have since been applied to many fields, including agriculture. In the past, the

agricultural-related activities were performed in a traditional way mostly

involving human labour to operate diverse equipment and machines. Farmers

need to constantly visit the crop fields to monitor the conditions and the data were

measured manually, crop by crop. Decisions on harvesting, as well as the suitable

amount of fertilizers and pesticides, can only be made after gathering enough

information from the crop field. These traditional ways were ineffective and time-

consuming, especially if they involved monitoring large-sized crop fields.

Fortunately, with the advancement of information technologies, these agricultural

activities were modernized by enabling automation to replace manual operations.

Hardware devices like sensors and actuators are deployed on the crop field to

gather and measure data, and the software system is used to process the data for

decision-making. As a result, the need for human labour has been decreased and

the time needed for data collection has been reduced. This new method is known

as Precision Farming (PF).

 However, with the existence of many devices, sensors and actuators, the

system complexity has become higher. The issue of complexity has been quite

common in the computing field for some decades. Among the contributing factors

are customer demands for innovative system functionalities, many kinds of

platforms created by vendors, and the ever-changing requirements by the

customers. Therefore, the code size and error rates will increase and it will

become difficult to maintain.

 Software reusability can be an appropriate strategy by which to solve this

complexity issue [1][2]. Software Product Line (SPL) is one of a number of

emerging paradigms that promotes reusability of software assets like components,

architectures, designs, data and modules [2]. SPL in software development aims to

produce software at lower costs and in a shorter time without neglecting

commonalities and variability in similar applications of the product lines [3].

Although there are many SPL methods available, such as COPA [9], FAST [10],

FORM [11], KobrA [12] and QADA [13], each of these methods has their own

advantages. However, most of them lack methods documentation and therefore

there are no concrete descriptions of processes involved. The problem also applies

to the design decision involved in the building of the PL architecture, which is the

most important artefact in the SPL process.

 In SPL, the most important concept is the identified attributes of a system,

known as features [5] that serve as a representation of reusable components and

requirements of a SPL by which to exploit the commonality and core assets and

manage their variability. Although SPL methods already cover the identification

and recognition of reusable core assets, there is still a gap between analysis and

design whereby the identified core assets are not formalized into a proper design

model. The lack of a systematic approach by which to compose and integrate the

3 Multi-Criteria Architecture Style Selection

identified reusable components has made the development of a functional PF

system undesirable. This is because most of the PF systems are manually

developed from scratch. Therefore, the introduction of suitable software

architecture could help to map PF software requirements with regard to

architectural design and ensure that both functional and non-functional

requirements are met.

 Nevertheless, each of the PF systems has different requirements. Thus,

selection of a suitable software architecture style is an important process in PF

software development because this choice could affect the quality of the final

product [15]. The objective of architecture style selection is to identify an

architecture style with the highest potential for meeting PF system requirements.

 The aim of this paper is to develop a PF system using enhanced SPL methods

with software architecture style from the selection using a multi-criteria selection

method. This will start from the analysis phase and extend until the initial

architecture design in the design phase. The organization of this paper is as the

following sections. Section 1 introduces the PF system, SPL methods, multi-

criteria selection method and software architecture style. Section 2 describes the

methodology, which is proposed for the paper. Section 3 explains the analysis

phase using SPL methods. Section 4 elaborates on the selection phase using a

multi-criteria selection method and Section 5 describes the initial design of the PF

system using the selected architecture style. Finally, Section 6 concludes the

objectives of the paper and reports the results found in the research.

2 Integrated Approach

This paper has proposed an integration approach for PF system development

involving the integrated SPL framework, multi-criteria selection method and

architecture design. The methodology is proposed and illustrated in Fig. 1. The

methodology takes into consideration several phases, namely: analysis phase,

selection phase and design phase respectively.

Mohd Z. M. Zaki et al. 4

Fig. 1: Integrated Approach

 In the analysis phase, the requirements of the PF system are analysed using an

integrated SPL framework. This framework consists of a combination of several

methods by which to produce a feature model. Based on the feature model,

reference architecture is produced. This reference architecture is important in

order to identify core assets that are reusable for the PF system. A software

architecture style is selected in the selection phase. The selection process is

performed using the fuzzy AHP method. Multiple criteria are extracted from PF

system requirements to enable the selection of suitable architecture style. The

design phase handles the design of the reusable assets in the form of software

pattern, based on the selection phase earlier. As a result, the PF system has been

designed.

 Basically, this integration is important in order to improve the current SPL

method. The current SPL method does not provide a concrete description on the

process by which to map architecture core assets to a concrete detailed design of

the reusable components. The mapping is important to enable the model-to-code

transformation. This integration can enable a systematic composition and

integration process for developing the PF system from identified reusable

components and not from scratch.

5 Multi-Criteria Architecture Style Selection

3 Analysis Phase

The most widely-used method for analysing a domain using features is Feature-

Oriented Domain Analysis (FODA) [5]. The main motive for using FODA is to

implement domain analysis in a systematic manner [6]. In FODA, those features

are constructed into a feature tree or feature model. The feature model is

composed of a hierarchy of features, with each branch holding mandatory,

optional, or mutually exclusive conditions. The FODA method will be used to

document requirement artefacts. The output will be a feature model of a PF

system based on SPL. Therefore, the FODA method is useful to the Analysis

Phase. In order to continue with the Design Phase and Implementation Phase, the

FODA method is extended to the Feature-Oriented Reuse Method (FORM) [7].

However, the obvious weakness of FORM is that it does not provide concrete

description on the process to map features to architecture styles. Further, it does

not focus on providing a clear transition between feature model and architecture,

instead only concretizing the FODA processes of analysis and design from a

marketing perspective.

 In order to map the requirements into architectural components, the Feature-

Architecture Mapping (FArM) method is used [4][8]. To address the feature

variability of software component, the FArM method is integrated with Feature

Dependency Analysis (FDA) method processes.

3.1 Overview of Integrated SPL Methods

The FDA method was introduced in order to specifically address the handling of

feature-oriented commonality and variability in an SPL [11]. In feature-oriented

SPL, the structural and configuration dependencies can be addressed using feature

modelling. However, it is also crucial to address the operational dependencies in

software development as these dependencies represent the relationship between

features during the operation of the system. Therefore, FDA’s main objective is to

represent the operational dependencies in software development.

 The method that will be used for mapping requirements into feature model is

the FODA method. FODA is chosen because it focuses mainly on the analysis of

the selected domain [5], which in this case is the PF application. The input for

FODA is the requirements collected from customers, stakeholders, as well as

developers. However, in this paper, the requirements will be extracted from six

case studies of PF based on WSN technologies. The requirements will be

transformed into features and will be organized in a structured diagram called the

feature model.

3.2 Domain Analysis Using FODA

The feature model from a study done by [12] is investigated so as to study the

feature model’s standard framework, which involves four layers, specifically:

capability, operating environment, domain technology, and implementation

Mohd Z. M. Zaki et al. 6

technique layers.

 Based on the selected domain, three case studies are selected for on-farm PF

and another three case studies for greenhouses PF. The case studies are selected

from past research papers of PF application, using wireless technologies. The

topic of discussion in these case studies includes: the systems for managing and

monitoring PF activities, the hardware components that are used to achieve

precise farming, the functionality requirements on each on-farm and greenhouse

PF application. Each case study is investigated in order to extract the main

components and requirements of PF based on its wireless environment. The

requirements from on-farm PF are then compared to those from greenhouses PF in

order to identify their respective similarities and differences. These similar and

different requirements are then used for developing the feature model.

 After all the features have been extracted from the selected case studies, they

will then be compared in order to identify common features as well as variable

features. They are then categorized in four layers, namely: Capability, Operating

Environment, Domain Technology, and Implementation Technique layers. Other

necessary requirements from on-farm PF that can be adopted are image capturing

and location sensing. This result is presented in Table 1.

Based on the feature categories that have been produced in Table 1, a feature

model is created which can be referred to in [13]. Relationships and variability

features are represented to provide a clear understanding of communication

between those domain features.

 The transformations are done in two steps, namely: extracting the super-

features and then organizing the super-features and sub-features. The first step of

the transformation is to extract the super-features from all the layers in the feature

model. The extracted super-features must be meaningful and represent the

functional and non-functional features of the PF software PL. The next step is to

organize the super-features and their sub-features. The super-features and their

sub-features are organized into a hierarchical structure or tree diagram. Their

relationships are shown using, specifically: Composed-Of, Generalization,

Implemented-By, and Required notations. The features variability such as

optional and alternative are also shown using notations.

7 Multi-Criteria Architecture Style Selection

Table 1: Feature Categories for PF SPL

Layer Feature Group Features

Capability

Features

Service

Input Application

• Fertilizers

• Pesticides

Field Environment Sensing

• Soil

• Climate

• Water

Location Sensing

Harvesting Mechanism

Image capturing

Operation Monitor and Control Operation

Non-Functional Property
Usability

Security

Operating

Environment

Features

Software/

Hardware Interface and

Platform

Communication

• Telephone

• Internet

• Bluetooth

Detection Devices

• Soil Sensor

• Environment Sensor

• Water Sensor

Action Devices

• Light

• Fan

• Sprinkler

• Input Pump

• Humidifier

• Heater

• CO2 Pump

Domain

Technology

Features

Domain Specific

Methods

Sensing Data

• Discrete Value

• Continuous Value

Responding Strategy

• Sequential

• Priority

Implementation

Technique

Features

Design and

Implementation

Decisions

Connection

• TCP

• UDP

Location

• Manual

• Automatic (GPS)

Mohd Z. M. Zaki et al. 8

3.3 Transformation Using Integrated FArM and FDA

The next phase is to use the selected feature-architecture mapping method (FArM)

to map the feature model onto architectural components. By using FArM, there

will be two outputs, namely: final transformed feature model and reference

architecture. In order to produce the reference architecture, the FDA method will

also be applied to the FArM method so as to handle the feature variability issue.

These two outputs will be used for creating the PF software architecture and are

ready for software reuse. The main goal for designing the architectural

components using FDA is to represent all three variable features, namely:

alternative, OR, and optional.

 The Transform Feature Model phase contains four transformations, namely:

Non-Architecture-Related (NAR) and Quality Features, Architectural

Requirements, Interacts Relations, and Hierarchy Relations as shown in Fig. 2.

NAR features consist of features that do not have any direct impact on the

software system. During NAR features transformation, the features are removed

from the feature model. Quality feature are those non-functional requirements of

the software system. The transformations use the transformation process of

quality features into functional implementation of the quality features.

Fig. 2: Enhanced Integrated FArM Product Line Framework

9 Multi-Criteria Architecture Style Selection

 The Architectural Requirements are the functional requirements of the

software system. During this phase, the transformed feature model only contains

the functional features. The term Interacts Relations refers to the communication

and dependencies between features. The transformation of Interacts Relations may

lead to the addition of new features or the integration of some features to other

features. The term Hierarchy Relations refers to the relationships between super-

features and their sub-features. The transformed feature model will display the

features in a hierarchical manner. The four transformations are done in n number

of iterations and parallel to the Building Reference Architecture phase. The

developers may revisit previous transformations if necessary and then proceed

through the rest of the transformations in the given order. Each transformation can

lead to adding new features, integrating existing features to other features,

dividing features, and reordering the hierarchy of the feature model respectively.

During the Building Reference Architecture phase, the component specifications

of the feature are derived. The PF Reference Architecture is illustrated in Fig. 3.

Fig. 3: PF Reference Architecture built using Enhanced FArM Method

Mohd Z. M. Zaki et al. 10

4 Architecture Style Selection with Fuzzy AHP

Reference architecture is the software architecture that provides the common

structures, components and their relationships to the existing systems in a

particular domain [22]. Thus, the reference architecture generated from the

Integrated Approach described in the previous sections is comprised of only the

logical architecture based on the functional requirements identified in domain

analysis. Focusing merely on the functional requirements is not enough where the

overall quality of the software has to be considered. Quality attributes play an

important role in software architecture where they affect the overall factors related

to the software such as: run-time behaviour, system design, and user experience

using the software [23]. Consequently, the appropriate architecture style is chosen

as it already has the best practise in terms of knowledge in architectural

development by the experts, and also the style already incorporates a certain

degree of quality attributes.

 Related works show that there are different architectural styles used in the

domain of precision farming. An analysis has been done in the target domain to

identify the architectural style used by researchers for precision agriculture

software development. The analysis reveals three of the most prominent

architecture style alternatives, specifically: layered architecture style [24][25],

centralized architecture style [26] and client-server architecture style [27]. Due to

the intuitive judgement involved in the process of selecting a suitable architecture

style, and the challenges in fulfilling the variability criteria in SPL which have

different functions and quality attributes concentration, different techniques are

used to solve the problem. Analytical Hierarchy Process (AHP), a technique

which facilitates the multi criteria decision-making, has been used by researchers

in the selection of architecture styles [20][28] where AHP provides an overall

ranking of architectural style based on the predetermined criteria given to it. There

is also another research which concentrates on using the fuzzy model to help in

the decision of architecture selection [21]. As in this paper, we concentrate on the

hybridization of this technique where the fuzzy model handles the imprecise

judgments made during architecture style selection, while the AHP will assist in

the pair wise comparison of the architecture styles.

 Prior to the use of Fuzzy AHP, the criteria and sub criteria for architecture

style selection have to be determined as an input to the technique. The first

criterion is reusability in product line application. Reusability involves two sub

criteria, namely: common and variable components. All products in the product

line use common components and variability components are used to cater for

certain degrees of differences between similar products in a product line.

Furthermore, architecture style selection is basically related with the non-

functional criteria suitable for the application to be developed. Therefore, for the

precision farming product line, we have identified two more criteria, namely:

efficiency and flexibility. Efficiency has the sub criteria of time and resource

utilization, which is based on ISO/IEC 9126 documentation. Both sub criteria are

11 Multi-Criteria Architecture Style Selection

important for the selection of architecture style, as the domain of precision

farming requires different types of embedded hardware such as sensors for

humidity and temperature to be deployed in the architecture, which will

consequently affect the timing and memory utilization of the developed product.

Flexibility has three sub criteria, specifically: change in algorithm, change in data

representation and change in function [21]. These sub-criteria are suitable for

product line application due to the variability aspect, which requires the

architecture style ability to accommodate to changes either in its algorithm, its

data representation or its function.

4.1 AHP criteria hierarchy

AHP is one of the most extensively used multi-criteria decision-making methods,

and is a mathematical decision–making technique proposed by [16]. AHP can

handle problems involving the evaluation of both tangible and intangible criteria

and subsequently yield sensible numerical results. Among the researchers using

AHP for architecture selection purpose are [20]. However, conventional AHP still

cannot reflect the human thinking style, therefore AHP is extended using fuzzy

logic to solve the fuzzy problems encountered in hierarchy [17][18].

 In AHP, the hierarchy of criteria and sub-criteria described previously are

mapped into a decision tree. Flexibility, performance and reusability are divided

into several sub-criteria respectively. Sub-criteria for flexibility include: change in

algorithm (CiA), change in function (CiF) and change in data representation

(CiDR). Sub-criteria for performance consist of timing (Ti), resource utilization

(RU) and efficiency (Ef). Sub-criteria for reusability comprise common (Co) and

optional (Op). The alternative architecture styles are centralized, client-server and

layered. The hierarchy is as shown in Fig. 4.

Mohd Z. M. Zaki et al. 12

Fig. 4: The hierarchy of suitable software architecture style

4.2 Selection process using fuzzy AHP

The prioritization process of those criteria and sub-criteria is important in order to

show the relationship of each element to decision-making. Later, a pair-wise

comparison of each element is performed. The determination of this pair-wise

comparison is required to be performed by various stakeholders. These

comparisons are conducted based on the rules of AHP fundamental scale so as to

measure the relative importance of each element [16][19].

 However, in relation to fuzzy AHP, the fuzzy evaluation matrix uses a

different scale based on a triangular fuzzy number. Based on this triangular fuzzy

number, via pair-wise comparison of weighted matrix, a fuzzy evaluation matrix

A = (aij)n×m
 is constructed. The pair-wise evaluation scale can be represented

using the triangular fuzzy number. For the estimation of the importance of these

criteria, the Fuzzy AHP is utilized. Let say that %A represents a fuzzified

reciprocal n, n − judgement matrix containing all pair-wise comparisons

%aij between elements iand j for all i, j ∈ {1, 2,..., n}



















=

)1,1,1(~~

~)1,1,1(~

~~)1,1,1(

~

1212

1212

112

K

MOMM

K

K

aa

aa

aa

A

j

13 Multi-Criteria Architecture Style Selection

where %aij = %a
−1

ij
and all %aij are triangular fuzzy numbers, %aij = lij, mij, uij() . The

triangular fuzzy number, %aij consists of lij
 and uij

 as the lower and the upper

limits respectively, and mij
is the point comprising the membership function,

µ(x) =1 . The membership functions of the triangular fuzzy number µ(x) are

described as in [29]:

µ(x) =

x − l

m − l
, x ∈ l, m[],

x − l

m − l
, x ∈ l, m[],

0, otherwise















where lij ≤ mij ≤ uij
. However, if lij = mij = uij

 then the fuzzy numbers are the crisp

numbers. Originally, the evaluation is performed using Saaty’s fundamental scale,

which consists of a 9-point scale. The scale ranges from 1 to 9, from equal

importance between elements i and j to absolute dominance of i over j and

reciprocal values, respectively. However, for this paper, an enhanced scale is used

[31]. The scale consists of sets of scale based on linguistic terms and

corresponding triangular fuzzy numbers.

Table 2: Linguistic terms and the Corresponding Triangular Fuzzy Numbers [31]

Saaty Scale Definition Fuzzy Triangular Scale

1 Equally Important (1,1,1)

3 Weakly Important (2,3,4)

5 Fairly Important (4,5,6)

7 Strongly Important (6,7,8)

9 Absolutely Important (9,9,9)

2

The intermediate values between

two adjacent scales

(1,2,3)

4 (3,4,5)

6 (5,6,7)

8 (7,8,9)

Via pairwise comparison, the fuzzy evaluation matrix relevant to the goal is

constructed in Table 3.

Mohd Z. M. Zaki et al. 14

Table 3: The Fuzzy Evaluation Matrix with respect to the goal

 Flexibility Performance Reusability

Flexibility (1,1,1) (2,3,4) (6,7,8)

Performance (0.25,0.33,0.50) (1,1,1) (4,5,6)

Reusability (0.13,0.14,0.17) (0.17,0.20,0.25) (1,1,1)

 After the matrix is completed, the consistency ratio of the matrix is measured.

The consistency ratio is calculated by using consistency ratio formula. The

formula consists of the calculation of the Consistency Index (CI) and Consistency

Ratio (CR). The formula is represented as Definition 4.1. CR is calculated to

measure the consistency level of judgement relative to large random samples.

 Definition 4.1: Consistency Index (CI) and Consistency Ratio (CR) of fuzzy

evaluation matrix.

 CI =
λmax − n

n −1

 CR =
CI

RI

where CI is the consistency index, λmax
 is the largest eigenvalue of matrix, n is

the order of comparison matrix, CR is consistency ratio and RI is the random

consistency index.

 Determination of priority vector is conducted using the eigenvalue approach to

determine the desired priority vectors [19]. The weight is derived using a square

calculation of the initial pair-wise matrix into a squared weighted matrix.

Following that, the values in the matrix undergo a summation and normalisation

process before proceeding to obtain the approximation of weight vector. The

squared fuzzy evaluation matrix is produced. Next, the values are summed and

normalized so as to procure the significant priority vector. Let { }nxxxX ,,, 11 K=

be an object set, and { }muuuU ,,, 11 K= be a goal set. According to the method of

extent analysis [29], each object is taken and an extent analysis is performed for

each goal respectively. Therefore, m extent analysis values for each object with

the following sign are obtained:

 niMMM
m

ggg iii
,,2,1,,,, 21

KK =

where all the),,2,1(mjM
j

gi
K= are triangular fuzzy numbers. The value of fuzzy

synthetic extent is defined as in Definition 4.2.

15 Multi-Criteria Architecture Style Selection

 Definition 4.2 Fuzzy Synthetic Extent with respect to the i
th object

 Si = Mgi

j ⊗ Mgi

j

j=1

m

∑
i=1

n

∑










j=1

m

∑
−1

From Table 3, by applying Definition 4.2, the following values are obtained:

S flexibility = (9.00,11.00,13.00) ⊗ (1 21.92,1 18.67,1 15.55)

= (9.00,11.00,13.00) ⊗ (0.046, 0.054, 0.064)

= (0.411, 0.59, 0.836)

Sperformance = (5.25, 6.33, 7.5) ⊗ (1 21.92,1 18.67,1 15.55)

= (5.25, 6.33, 7.5) ⊗ (0.046,0.054, 0.064)

= (0.24, 0.34, 0.482)

Sreusability = (1.3,1.34,1.42) ⊗ (1 21.92,1 18.67,1 15.55)

= (1.3,1.34,1.42) ⊗ (0.046, 0.054, 0.064)

= (0.059, 0.07, 0.091)

The degree of possibility of M1 ≥ M2
is defined as:

 V M1 ≥ M2() = sup
x≥y

min µM1 x(), µM2 y()() 

When a pair (x, y) exists such that x ≥ y and µM1 x() = µM2 y() ,

thenV M1 ≥ M2() =1. Since M1
 and M2

 are convex fuzzy numbers, accordingly:

 V M1 ≥ M2() =1 if m1 ≥ m2
, or

V M1 ≥ M2() = hgt(M1 ∩ M2)

= µM1 d()

where d is the ordinate of the highest intersection point D between µM1
 and

µM2
, as illustrated in Fig. 5.

Mohd Z. M. Zaki et al. 16

Fig. 5: The intersection between M1

 and M2

When M1 = l1, m1,u1() and M2 = l2, m2,u2() , the ordinate of D is given by:

V M1 ≥ M2() = hgt(M1 ∩ M2)

=
l1 − u2

m2 − u2() − m1 − l1()

 To compare M1
 and M2

 we need both the values of V M1 ≥ M2()

and V M2 ≥ M1() . The degree of possibility for a convex fuzzy number to be

greater than k convex fuzzy numbers means that),,2,1(kiM i K= can be defined

by:

 () ()[])()(,,, 2121 kk MMandandMMandMMVMMMMV ≥≥≥=≥ KK

 Using these vectors, the values of V M1 ≥ M2() and V M2 ≥ M1() can be

obtained. Hence, the values obtained are:

 V (S1 ≥ S2) =1

 V (S1 ≥ S3) =1

V (S2 ≥ S1)

=
0.24 − 0.836

(0.59 − 0.836)− (0.34 − 0.24)

=1.722

17 Multi-Criteria Architecture Style Selection

 V (S2 ≥ S3) =1

V (S3 ≥ S1)

=
0.059 − 0.836

(0.59 − 0.836)− (0.07 − 0.059)

= 2.995

V (S3 ≥ S2)

=
0.059 − 0.482

(0.34 − 0.482)− (0.07 − 0.059)

= 2.716

Finally, let assume that ′d (A
i
) = minV S

i
≥ S

k() . For iknk ≠= ;,,2,1 K . The

weight vector is then given by:

 T

nAdAdAdW))(,),(),((21
′′′=′ K , where ()niAi ,,2,1 K= are n elements.

 Via normalization, the normalized weight vectors are:

 T

nAdAdAdW))(,),(),((21 K= , where W is a non-fuzzy number. Therefore,

these values are obtained:

′d (Flexibility) = V (S1 ≥ S2, S3)

= min(1,1)

=1

′d (Performance) = V (S2 ≥ S1, S3)

= min(1.722,1)

=1

′d (Reusability) = V (S3 ≥ S1, S2)

= min(2.995, 2.716)

= 2.716

Therefore, ′W = (1,1,2.716)T and via normalization, the weight vectors obtained

with respect to the criteria Flexibility, Performance and Reusability are

W = (0.212, 0.212, 0.576)T .

 The evaluation process then compares the sub-criteria with respect to main

criteria. The other tables will not be given in the paper, as the calculation is

similar. Finally, after adding the weights for goal alternatives multiplied by the

weight of the corresponding criteria, a final score is obtained for each software

Mohd Z. M. Zaki et al. 18

architecture style. Table 4 shows the final scores for the software architecture

style. A layered-style software architecture style is selected for the design.

Table 4: The Final Scores

 Centralized Client-Server Layered

Final Scores 0.13 0.40 0.47

5 Design Phase

Based on the PF Reference Architecture, which has been built using the enhanced

SPL method, an initial PF software architecture is developed using the selected

software architecture style. Component-Based Development (CBD) has been

chosen as one of the layered software architecture styles catering to the initial

design of PF system. The component is then modelled using the integrated

component model proposed in [14]. The component model is a part of the Code

Generation Implementation Steps
©

 and implemented using a Component Oriented

Programming (COP) framework [30]. Fig. 5 shows an example of the PF system

modelled using layered architecture style, taking advantage of the component

model.

In COP Framework, the component model specifications component

compositions are defined in an integrated component model form. This integrated

component model is a part of the proposed Code Generation Implementation

Steps
©

. The Code Generation Implementation Steps process is proposed as a

guideline for generating codes and implements through a commercial software

development tool. The code generation implementation steps are made up of

several steps, represented as follows.

 The components are modeled using the proposed integrated component model.

Later, the component models are mapped into the software modeling tool. After

components specification, these components are realized using two artifacts,

namely: class diagram and state diagram. Both of these models are also mapped

into the software modeling tool. Subsequently, the component models, diagrams,

class diagrams and state diagrams respectively are verified as being either correct

or incorrect. This checking process can ensure that all the diagrams are mapped

accurately into the modeling tool. Eventually, the components are composed and

integrated in the Composite Component diagram. The components composition

and integration process is significant by which to develop a whole system. In

addition, this process checks the diagram correctness.

19 Multi-Criteria Architecture Style Selection

Fig. 5: Initial Design of PF System using Layered Architecture Style

 Referring to PF Reference Architecture as shown in Fig. 3, a component

composition diagram is then constructed. In the diagram for the PF reference

architecture, such examples of hardware components are identified, specifically:

OutSideTempSensor, TempHumidSensor, Fan, Cooler, DisplayInterface and

WirelessComp, while the software components are SetFanSpeed,

SetTemperature and ControlLoop. These hardware components are identified

from the PF reference architecture, considering hardware and software relations

respectively.

 The HAL provides some interface functions for controlling actuators and

reading sensors on the mobile robot. Thus, a user without any hardware

knowledge can program the mobile robot easily. Fig. 5 shows how HAL and

RTOS connect to each other so as to provide interface to the related hardware

devices.

HAL provides decoupling between the application software and the underlying

hardware. RTOS provides an abstraction layer that hides from application

software the hardware details of the processor or set of processors, upon which the

application software will run. In the development of real-time embedded systems,

Mohd Z. M. Zaki et al. 20

the use of RTOS will increase the software productivity and improve the

performance of the real-time system.

 The RTOS Abstraction Layer (RTOS AL) provides a thin layer of interface

between the components and the actual RTOS. Much of the software code

described in HAL is written so that the software engineer does not need to know

in detail what hardware devices are used or how to connect and interact with that

hardware. Instead, abstracted functionality is provided in HAL in order to

promote software reuse. Besides, this also can help to simplify the software

coding process.

6 Conclusion

The integration of an enhanced SPL method and a multi-criteria decision-making

method shows some promises to counter the complexity in PF system

development by aiding the selection of a suitable software architecture style

through the application of enhanced FArM methods for analysis. Further, it is

assisted by fuzzy AHP for the selection process. From the selection process, a

suitable software architecture style is chosen based on the criteria provided.

 From the results obtained from the analysis phase to the design phase, it can be

seen that the current effort of choosing and selecting a suitable software

architectural style has been reduced. With the introduction of the fuzzy AHP, a

suitable software architecture design is selected for aiding the design process.

Using multi-criteria analytic hierarchy process and fuzzy logic mechanism offered

by fuzzy AHP methods for selection, the PF system could be developed correctly

using suitable software architecture style to meet the PF system requirements.

ACKNOWLEDGEMENTS
Special thanks are extended to the Universiti Teknologi Malaysia for providing

facilities, support, and guidance; also to our Embedded & Real-Time Software

Engineering Laboratory (EReTSEL) and Software Engineering Research Group

(SERG), K-Economy Research Alliance (RAKE), Universiti Teknologi Malaysia

members for their continuous support.

References

[1] W. B. Frakes and K. Kang. 2005. Software Reuse Research: Status and

Future, IEEE Transactions on Software Engineering, Vol. 31, No. 7, 529-

536.

[2] K. Pohl, G. Böckle and F. V. Linden. 2005. Software Product Line

Engineering: Foundations, Principles, and Techniques. Springer-Verlag

New York Inc.

21 Multi-Criteria Architecture Style Selection

[3] H. Gomaa. 2004. Designing Software Product Lines with UML: From Use

Cases to Pattern-Based Software Architectures. Addison-Wesley Longman

Publishing Inc.

[4] H. Mili, A. Mili, S. Yacoub and E. Addy. 2001. Reuse-Based Software

Engineering: Techniques, Organization, and Controls. Wiley-Interscience

New York.

[5] K. C. Kang, S.G. Cohen, J. A. Hess, W. E. Novak and A. S. Peterson. 1990.

Feature-Oriented Domain Analysis (FODA) Feasibility Study, Carnegie

Mellon University, Software Engineering Institute. CMU/SEI-90-TR-21.

[6] K. Lee, K. C. Kang, W. Chae and B. W. Choi. 2000. Feature-Based

Approach to Object-Oriented Engineering of Applications for Reuse.

Software-Practice and Experience, Vol. 30, No. 9, 1025-1046

[7] K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin and M. Huh. 1998. FORM: A

Feature-Oriented Reuse Method with Domain-Specific Reference

Architectures. Annals Of Software Engineering. Vol. 5, No. 1. 143-168.

[8] P. Sochos, M. Riebisch and I. Philippow. 2006. The Feature-Architecture

Mapping (FArM) Method for Feature-Oriented Development of Software

Product Lines, 13
th

 Annual IEEE International Symposium and Workshop

on Engineering of Computer Based System (ECBS 2006), 318.

[9] M. Matinlassi. 2004. Comparison of Software Product Line Architecture

Design Method: COPA, FAST, FORM, KobrA, and QADA, 26th

International Conference on Software Engineering (ICSE 2004), 127-136,

IEEE.

[10] P. Sochos. 2007. The Feature-Architecture Mapping Method for Feature-

Oriented Development of Software Product Lines. Doctor of Philosophy.

[11] K. Lee and K.C. Kang. 2004. Feature Dependency Analysis for Product

Line Component Design, Software Reuse: Methods, Techniques and Tools,

Vol. 3107, 69-85

[12] K. C. Kang, J. Lee and P. Donohoe. 2002. Feature-Oriented Product Line

Engineering, IEEE Software. Vol. 19, No. 4, 58-65.

[13] N.M. Hamdan. 2012. The Integrated Method for a Systematic Approach in

Developing Precision Farming Software Product Line Architecture, Master

of Science (Computer Science), Universiti Teknologi Malaysia.

[14] M. Z. M. Zaki. 2012. Integrated Component-Based Model and Code

Generation Implementation Steps for Embedded Real-Time System

Development, Master of Science (Computer Science), Universiti Teknologi

Malaysia.

Mohd Z. M. Zaki et al. 22

[15] S. Vijayalakshmi, G. Zayaraz and V. Vijayalakshmi. 2010. Multicriteria

Decision Analysis Method for Evaluation of Software Architectures,

International Journal of Computer Applications, Vol. 1, No. 25, 22-27.

[16] T. L. Saaty. 1980. The Analytic Hierarchy Process, McGraw-Hill

International, New York.

[17] C. Kahraman, D. Ruan and I. Doǧan. 2003. Fuzzy group decision-making

for facility location selection, Information Sciences, Vol. 157, 135-153.

[18] C. Kahraman, U. Cebeci and Z. Ulukan. 2003. Multi-criteria supplier

selection using fuzzy AHP, Logistics Information Management, Vol. 16,

No. 6, 382-394.

[19] T. L. Saaty. 2008. Decision making with the analytic hierarchy process,

International Journal of Services Sciences, Vol. 1, No. 1, 83-98.

[20] S. D. Kim, H. G. Min, J. S. Her and S. H. Chang. 2005. DREAM: A

practical product line engineering using model driven architecture. The

Third International Conference on Information Technology and Application

(ICITA 2005), Vol. 1, 70-75, IEEE.

[21] S. Moven, J. Habibi, H. Asmadi and A. Kamandi. 2008. A Fuzzy Model for

Solving Architecture Styles Selection Multi-Criteria Problem, Second

UKSIM European Symposium Computer Modelling and Simulation (EMS

2008), 288-293, IEEE.

[22] L. Tan, Y. Lin, and H. Ye. 2012. Modeling Quality Attributes in Software

Product Line Architecture, 2012 Spring Congress on Engineering and

Technology (S-CET), 1–5, IEEE.

[23] J. D. Meier. 2009. A Language for Software Architecture. The Architecture

Journal TechEd Special Edition. Microsoft.

[24] L. S. Iliadis, R. Nikkilä, I. Seilonen and K. Koskinen. 2010. Software

architecture for farm management information systems in precision

agriculture. Computers and Electronics in Agriculture, Vol. 70, No. 2, 328–

336.

[25] Y. Wang, Y. Wang, X. Qi and L. Xu. 2009. OPAIMS: Open Architecture

Precision Argiculture Information Monitoring System, Proceedings of the

2009 International Conference on Compilers, Architecture, and Synthesis

for Embedded Systems (CASES 2009), 233-240, ACM Press.

[26] X. Li, Y. Deng and L. Ding. 2008. Study on precision agriculture

monitoring framework based on WSN. 2nd International Conference on

Anti-counterfeiting, Security and Identification (ASID 2008). 182–185,

IEEE.

23 Multi-Criteria Architecture Style Selection

[27] R. Jaichandran. 2011. Prototype System for Monitoring and Computing

Greenhouse gases. World of Computer Science and Information Technology

Journal (WCSIT), Vol. 1, No. 5, 177–183.

[28] M. Galster, A. Eberlein and M. Moussavi. 2010. Systematic selection of

software architecture styles. IET Software, Vol. 4, No. 5, 349-360.

[29] D. Y. Chang. 1996. Applications of the extent analysis method on fuzzy

AHP, European Journal of Operational Research, Vol. 95, No. 3, 649-655.

[30] D. N. A. Jawawi, S. Deris, and R. Mamat. 2008. Early-Life Cycle Reuse

Approach for Component-Based Software of Autonomous Mobile Robot

System. The 9
th

 ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking, and Parallel/Distributed Computing

(SNPD 2008), 263-268, IEEE.

[31] M. B. Ayhan. 2013. A Fuzzy AHP Approach for Supplier Selection

Problem: A Case Study in a GearMotor Company. International Journal of

Managing Value and Supply Chains (IJMVSC), Vol. 4, No. 3, 11-23.

