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ABSTRACT 

 

Hyperthermia treatment has been used to treat brain tumor diseases where 

conventional surgical removal is invasive and poses threat to a patient. The 

treatment technique is to apply microwave energy which transforms into heat on the 

target tumour without overheating surrounding healthy tissue. The insulated 

monopole has proven to be suitable as an applicator in hyperthermia treatment 

whereby its thin slot form and small cross section area allows it to reach deep seated 

brain tumour. Nowadays, simulation is used to evaluate insulated monopole design. 

However, existing commercial simulators are difficult to learn and operate. In this 

study, a simple and user friendly finite-difference-time-domain (FDTD) based 

simulator written in MATLAB codes is developed for hyperthermia brain tumour 

treatment. Using the developed simulator, electric field, specific-absorption-rate 

(SAR) distribution and reflection coefficient of two designed insulated monopoles 

have been studied. The first designed insulated monopole is a simple insulated 

monopole with thin air gap. The second design is a multi-layer insulated monopole 

used to treat large deep-seated brain tumour. The resulting electric field and SAR 

distribution were compared and validated against analytical solutions and 

commercial simulator’s results, respectively. The simulator’s result was found to be 

more accurate with less reflection at the wave scatter boundary when complex 

frequency shifted perfectly matched layer (CFS-PML) absorbing boundary condition 

was used. And the optimal parameters of the absorbing boundary condition CFS-

PML in reducing computation cost were identified to be 10 layers with the degree of 

polynomial, m = 4.  
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ABSTRAK 

 

Rawatan hipertermia telah digunakan untuk merawat tumor otak di mana 

kaedah pembedahan konvensional adalah invasif dan membahayakan pesakit. 

Rawatan ini menggunakan tenaga gelombang mikro untuk menjanakan tenaga haba 

supaya memanaskan tumor tanpa memanaskan tisu yang sihat di sekelilingnya. 

Ekakutub tertebat adalah peranti yang sesuai digunakan sebagai aplikator dalam 

rawatan hipertermia. Ini disebabkan aplikator tersebut mempunyai keratan rentas 

yang kecil dan terpencil di mana ia dapat mencapai kedudukan tumor yang terletak 

dalam rongga otak. Kini, ekakutub tertebat biasanya direka dengan menggunakan 

simulator. Tetapi, simulator komersial sedia ada sukar dioperasikan dan dipelajari. 

Dalam kajian ini, simulator yang mudah dan mesra pengguna berdasarkan kaedah 

perbezaan-terhingga-domain-masa (FDTD) telah dibina dengan menggunakan kod 

MATLAB. Dua jenis ekakutub tertebat telah direka dan dikaji dengan simulator 

tersebut dan prestasinya ditentukan berdasarkan taburan medan elektrik, taburan 

kadar-penyerapan-tentu (SAR) dan pekali pantulan masing-masing. Bentuk 

ekakutub pertama adalah ekakutub tertebat yang asas dengan lapisan udara di 

tengah. Bentuk ekakutub yang kedua ialah ekakutub tertebat berbilang lapisan yang 

diguna untuk merawat tumor otak yang besar dan letak dalam. Penyelesaian simulasi 

seperti taburan medan elektrik dan SAR telah dibandingkan dengan penyelesaian 

beranalisis dan kaedah unsur terhingga dan didapati lebih tepat disebabkan 

pengunaan lapisan padanan sempurna teranjak frekuensi kompleks (CFS-PML) yang 

mengurangkan pantulan di sempadan serakan gelombang. Parameter optimum yang 

dikenal pasti untuk CFS-PML dalam mengurangkan kos pengiraan komputer adalah 

10 lapisan pada darjah polynomial, m = 4. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of the Study 

 

In medical field, hyperthermia treatment has been seen as a better alternative 

treatment to tumor disease (Moroz et al., 2002). Conventional practicing treatment such 

as surgical operation, chemotherapy and radiotherapy leave side effects to patient, as it 

is not localized on the tumor and rather toxic in the process. Hyperthermia treatment on 

the other hand is the opposite, where thin needle shape of insulated monopole antenna is 

penetrated into the target tumor tissue through skin and electromagnetic wave is 

radiated to produce heat as shown in Figure 1.1. Eventually, the surrounding 

temperature of tumor tissue cell increased to the therapeutic temperature between 42 

and 45 °C for the purpose of destroying cancer tumor cells (Guojun et al., 2010).  

For hygienic purpose, near lossless dielectric material is used to cover the 

conductor of the bare monopole antenna. In the process of the treatment, temperature 

near to the antenna can reach 100  C. Air gap is introduced between the conductor and 

the tumor cells to protect the antenna.  
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Figure 1.1: 3-D cross sectional view of thin monopole antenna radiating wave to 

produce heat.  

 

In hyperthermia study, the primary interest is the near field close to the antenna 

where most of the heating takes place. Different design configuration of the monopole 

and Radio frequency (RF) or thermodynamic parameters will produce different heat 

distribution. Due to complexity of configuration of monopole antenna (multilayer 

insulated monopole antenna), researchers nowadays use simulator to calculate the heat 

distribution in preliminary design stage of antenna. In this study, finite difference time 

domain (FDTD) is employed to study the electromagnetic field and specific absorption 

rate (SAR) distribution produced by the insulated monopole. FDTD has the advantages 

of being simple to implement and capable of wideband analysis compare to other 

method such as finite element method (FEM) and Method of Moment (MoM). Detail 

description of FDTD will be available in Chapter 2. On the other hand, finite difference 

method (FDM) is subsequently used to calculate the heat distribution using SAR 

distribution as heat source.  

The research work is divided into two parts. The first part is to validate the 

computational result by studied simulator with the calculated result from the analytical 

Antenna 

Body 

tissue 
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method and commercial software. The model used in the validation is a simple one 

layer insulated monopole and the validated result includes electric field distribution, 

input impedance, and heat distribution which are the essential parameters in brain tumor 

hyperthermia treatment (Ahn et al., 2005). In the second part, the studied simulator is 

used to design multi-layers insulated monopole and calculated performances are 

validated using commercial software, so-called COMSOL Multiphysics. 

 

1.2 Problem Statements 

 

Recently, most of the commercial simulators are catered for multidisciplinary 

purpose due to competitive market. Thus, this kind of simulator has a lot of parameters 

or constant values are required to be properly defined before performing the simulation. 

In this study, a simple, accurate and user friendly graphical-user-interface (GUI) FDTD-

based simulator particularly for insulated monopole will be developed for hyperthermia 

brain tumor treatment. 

Brain tumors are among the most difficult forms of cancer to treat as brain 

tumor can be large and deep seated in brain cavity. The insulated monopole is an 

appropriate selection to treat brain tumor with hyperthermia technique since it is long, 

thin and small in cross sectional area to reach the targeted tumor. Furthermore, the 

monopole antenna’s return loss has to be low to achieve the maximum energy transfer 

to the brain tumor from the monopole. 

Besides, deviation between experimental result and simulation result in open-

ended FDTD simulations caused by reflected outgoing electromagnetic waves from 

computational domain’s boundary is also improved in this study.  
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1.3 Objectives of the Study 

 

Create FDTD-based GUI simulator using MATLAB to solve the insulated 

monopole problems. The 2-D studied simulator is particularly used to simulate insulated 

monopole in brain tumor for hyperthermia application. 

On the other hand, the sub-objective of this study is to identify the optimal 

parameters of the absorbing boundary condition-CPML used in FDTD in order to 

improve the accuracy of the simulation. 

 

1.4  Scopes of the Study 

 

Scope of this study can be broken down as: 

i. To review analytical method, FEM and FDTD methods in solving insulated 

monopole’s problem and identify their advantages and disadvantages. 

ii. To validate the accuracy of studied simulator and improve it by reducing the 

reflection from the boundary. 

iii. To determine electric field and heat distribution radiated by insulated monopole 

in brain tumor hyperthermia application using studied FDTD-based simulator. 

iv. To use parameters from available published ex-vivo experimental work (Ahn et 

al., 2005) in simulation work. Experimental work will not be part of the study. 

 

1.5 Motivation of the Work 

 

Recently, hyperthermia treatment has been proven to be capable and reliable to 

treat cancer tumor (Sterzer, 2002). Therefore, this project is held to contribute in 

respective field especially in brain tumor treatment. In fact, the hyperthermia treatment 
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performance can be referred to the numerical simulation result without actual build of 

the treatment system. 

However, electromagnetic field and heat distribution simulations involve both 

complex mathematics and numerical computation that are difficult to comprehend and 

master. Through this work, better understanding of the underlying can be gained and 

eventually improves simulation accuracy. Improving accuracy in simulation will 

decrease the cost in designing applicator for hyperthermia treatment and deliver better 

guarantee of its use. 

 

1.6 Thesis Outline 

 

 The thesis is divided into 6 chapters. Chapter 2 reviews history and theoretical 

background of analytical and numerical method on insulated monopole. Advantages 

and disadvantages between FDTD and FEM are also compared. Next, different designs 

of insulated monopoles used as applicator in hyperthermia treatment are presented. 

Finally, brief theoretical background of absorbing boundary condition used to absorb 

scattering electromagnetic waves at the boundary is outlined.   

Chapter 3 describes the methodology used to develop the FDTD-based 

simulator. MATLAB codes on source excitation, post processing, SAR and heat 

distribution calculations are presented. Assumption and boundary conditions used are 

mentioned.  

Chapter 4 discusses the validation results of developed simulator with analytical 

method and commercial software. The optimized parameters for absorbing boundary 

conditions to reduce computation resource are also addressed. 

Chapter 5 presents the application of developed simulator on multi-layer 

insulated monopole used in brain tumor hyperthermia treatment. The validation of 
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simulated result with commercial simulator, namely COMSOL Multipyhsics 4.2, is also 

presented. 

Chapter 6 concludes this project and presented future work recommendation to 

further reduce the differences between simulation result and experimental result in brain 

tumor hyperthermia. 
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